
purdue university · cs 52000
computational optimization

HOMEWORK 7
Mathieu Gaillard

March 4, 2019

Problem 0: Homework checklist

I mainly used the class material, Google, Wikipedia and my previous knowledge.
I also asked a question on Piazza.

Problem 1

Question 1:

Implement a backtracking line search routine to select the step length and add
this to our simple gradient descent code from the lectures.

Following is the backtracking function that is later used by a script.� �
using Printf, LinearAlgebra, ApproxFun

function backtracking_gradient_descent(fgh,x0;
maxiter=10000,tol=1.0e-8,quiet=false,hessian=false,histx=[],hista=[],mu=0.1)

x = copy(x0)
n = length(x)

hist = zeros(2,maxiter)
savehistx = eltype(histx) == Vector{Float64} ? true : false
savehista = eltype(hista) == Float64 ? true : false

f = Inf
normg = Inf
lastiter = 0
g = Vector{Float64}()
h = Matrix{Float64}(undef, 0, 0)

if !quiet
@printf(" %6s %9s %9s %9s\n", "iter", "val", "normg", "fdiff");

end

for iter=1:maxiter
if savehistx

push!(histx, x);
end

if iter>1
Choose the search direction
if hessian

p = -h\g; # Newton
else

p = -g; # Gradient descent
end

Choose alpha with the backtracking method
alpha = 1.0;
while (fgh(x + alpha*p)[1] > f + mu*alpha*p'*g)

alpha /= 2;
end

Step towards the descent direction
x = x + alpha*p;

Save the value of alpha in the history
if savehista

push!(hista, alpha);
end

end

flast = f

1

f,g,h = fgh(x)
normg = norm(g,Inf)

fdiff = flast - f

if !quiet
@printf(" %6i %9.2e %9.2e %9.2e\n",

iter, f, normg, fdiff)
end

hist[:,iter] = [f; normg]
lastiter = iter

if normg <= tol
break

end
if !isfinite(normg)

break
end

end

if lastiter < maxiter
hist = hist[:,1:lastiter]

end

if normg > tol
@warn "Did not converge"

end

return x,f,g,hist
end� �

Following is a script to use the backtracking function.� �
using OptimTestProblems;
using Plots;

plotly(size = (800, 600));

include("simple_gradient_descent.jl");

The function we want to optimize
optim_function = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"];

To easily diplay a contour plot
ezcontour(x, y, f) = begin

X = repeat(x', length(y), 1)
Y = repeat(y, 1, length(x))
Evaluate each f(x, y)
Z = map((x,y) -> f([x,y]), X, Y)
plot(x, y, Z, st=:contour)

end

function opt_combine(x, f, g!, h!)
gradient = Vector{Float64}(undef, length(x));
hessian = Matrix{Float64}(undef, length(x), length(x));
g!(gradient, x);
h!(hessian, x);
return (f(x), gradient, hessian);

end
function opt_problem(p)

return x -> opt_combine(x, p.f, p.g!, p.h!);
end

Here's an example
fgh = opt_problem(optim_function);

histx = Vector{Vector{Float64}}();
hista = Vector{Float64}();
x,fx,gx,hist = backtracking_gradient_descent(fgh, [1.2,1.2];
maxiter=16000, quiet=true, hessian=false,
histx=histx, hista=hista, mu=0.01);
x,fx,gx,hist = backtracking_gradient_descent(fgh, [1.2,1.2];

maxiter=16000, quiet=true, hessian=true,
histx=histx, hista=hista, mu=0.01);

ezcontour(-1.5:0.05:1.5, -1.5:0.05:1.5, optim_function.f);
plot!(map(first,histx),map(x->x[2], histx), linewidth=2);

plot(hista,linewidth=2,title="Step lengths");� �
2

Here is how the script behave on the Rosenbrock function. Figure 1 shows the path
taken using gradient descent and backtracking starting from (1.2, 1.2). Figure 2
shows the path taken using Newton direction and backtracking starting from
(1.2, 1.2). Figure 3 shows the path taken using gradient descent and backtracking
starting from (−1.2, 1.0). Figure 4 shows the path taken using Newton direction
and backtracking starting from (−1.2, 1.0). With both starting points, a maximum
of 16,000 iterations and c1 = 0.01, only the method using Newton direction
converges.

Figure 1: Rosenbrock function starting from (1.2, 1.2) using Gradient Descent
and backtracking.

Question 2:

Prepare a plot of the step lengths (values of αk that were accepted) when we run
gradient descent with this line search on the Rosenbrock function staring from
the point (1.2, 1.2) and also the point (−1.2, 1).

Step lengths with gradient descent and backtracking are in Figure 5 and 6.

Question 3:

Implement Newton’s method using line search as well: just use the search direction
H(xk)p = −gk.

In the code, we add this line of code:� �
p = -h\g; # Newton direction� �

3

Figure 2: Rosenbrock function starting from (1.2, 1.2) using Newton direction
and backtracking.

Figure 3: Rosenbrock function starting from (−1.2, 1.0) using Gradient Descent
and backtracking.

Question 4:

Prepare a plot of the step lengths as in part 2.

4

Figure 4: Rosenbrock function starting from (−1.2, 1.0) using Newton direction
and backtracking.

Figure 5: Step length with Rosenbrock function starting from (1.2, 1.2) using
Gradient Descent and backtracking.

Step lengths with Newton direction and backtracking are in Figure 7 and 8.

5

Figure 6: Step length with Rosenbrock function starting from (−1.2, 1.0) using
Gradient Descent and backtracking.

Figure 7: Step length with Rosenbrock function starting from (1.2, 1.2) using
Newton direction and backtracking.

Question 5:

Discuss any notable differences or similarities.

6

Figure 8: Step length with Rosenbrock function starting from (−1.2, 1.0) using
Newton direction and backtracking.

Starting from both points, we can see that a lot less steps are required with the
Newton direction than the Gradient Descent. Using the Newton direction, the
step size is almost always 1. On the contrary, with the Gradient Descent direction,
it is always close to zero. Therefore, Gradient Descent converges slower.

Problem 2

Describe what would happen if you used backtracking line search on a strongly
convex quadratic:

f(x) = 1/2xT Qx − xT c.

Be as precise as possible and think about comparing with exact line search.

The only difference between the two methods is how we choose the step length.
Exact line search looks for the minimum of f(x −αg) and can go as far as needed.
Conversely, backtracking tries different discrete values of α, starting with 1, 1/2,
1/4 . . . Thus it explores only a limited set of possible solutions. Although it is
always going to find a step that decreases the function f , the vast majority of
time, it is not going to be the optimal step as found with exact line search. So
first conclusion, backtracking cannot be better than exact line search, it’s only an
approximation. However, it is not significantly worse, because of the sufficient
decrease condition, it will converge linearly. Simply, the rate of convergence is
not going to be as fast as exact linear search. Usually it is not possible to do an
exact line search, that’s why backtracking is a good approximation.

7

Problem 3

Consider the function

f(x) = −qT x +
∑

j

yj log(CT x)j

where C is a very large matrix and computing CT x is expensive. Show how we
can use the structure of the function to reduce the number of matrix vector
products CT x that would be required for checking the Wolfe conditions when
searching in a direction p. (Hint, compute w = CT p once, and see how to re-use
it.)

The Wolfe conditions are:

f(xk + αpk) ≤ f(xk) + αc1pT
k gk

g(xk + αpk) ≥ c2gT
k pk

The gradient of our function is:

∂f

∂xi
= −qi +

∑
j

yj
cij

(CT x)j

In the case of our function, the evaluation of these conditions needs to be cheap
when only α is varying. For that we compute some expressions in advance in
order to avoid the computation of CT x. At the beginning of the iteration k, we
compute v = CT xk, w = CT p, f(xk), gk and we reuse them every time we check
the Wolfe conditions. It works because CT x is linear.

When we check the two conditions, we compute:

f(xk + αpk) = −qT (xk + αpk) +
∑

j

yj log(CT (xk + αpk))j

and
∂f

∂xi
= −qi +

∑
j

yj
cij

(CT (xk + αpk))j

The most expensive term to compute is: CT (xk +αpk), which is equal to v +αw
(simply the sum of 2 vectors).

8

	Problem 0: Homework checklist
	Problem 1
	Question 1:
	Question 2:
	Question 3:
	Question 4:
	Question 5:

	Problem 2
	Problem 3

