
purdue university · cs 52000
computational optimization

HOMEWORK 6
Mathieu Gaillard

February 24, 2019

Problem 0: Homework checklist

I mainly used the class material, Google, Wikipedia and my previous knowledge.

Problem 1

Using the codes from class (or your own implementations in another language)
illustrate the behavior of the simplex method on the LP from problem 13.9 in
Nocedal and Wright:

minimize −5x1 − x2

subject to x1 + x2 ≤ 5
2x1 + (1/2)x2 ≤ 8
x ≥ 0

starting at [0, 0]T after converting the problem to standard form.

Use your judgement in reporting the behavior of the method.

The standard form is:

minimize −5x1 − x2

subject to x1 + x2 + s1 = 5
2x1 + (1/2)x2 + s2 = 8
x, s ≥ 0

This problem is easily solved by the Simplex algorithm. See the Julia code in
the following listing. Starting at [0, 0]T the algorithm moves to the vertex on
the right, which is the optimum. A region plot is shown in Figure 1. The BFP
contains columns 1 and 3 and the value of x at the optimum is [4.0, 0.0, 1.0, 0.0]T .� �

using LinearAlgebra
using Plots
plotly(size = (800, 600));

include("plotregion.jl");

struct SimplexState
c::Vector
A::Matrix
b::Vector
bset::Vector{Int} # columns of the BFP

end

struct SimplexPoint
x::Vector
binds::Vector{Int}
ninds::Vector{Int}
lam::Vector # equality Lagrange mults
sn::Vector # non-basis Lagrange mults
B::Matrix # the set of basic cols
N::Matrix # the set of non-basic cols

end

These are constructors for SimplexPoint
function SimplexPoint(T::Type)

1

return SimplexPoint(zeros(T,0),zeros(Int,0),zeros(Int,0),
zeros(T,0), zeros(T,0), zeros(T,0), zeros(T,0))

end

function SimplexPoint(T::Type, B::Matrix, N::Matrix)
return SimplexPoint(zeros(T,0),zeros(Int,0),zeros(Int,0),

zeros(T,0), zeros(T,0), B, N)
end

function simplex_point(s::SimplexState)
m,n = size(state.A)
@assert length(state.bset) == m "need more indices to define a BFP"
binds = state.bset # basic variable indices
ninds = setdiff(1:size(state.A,2),binds) # non-basic
B = state.A[:,binds]
N = state.A[:,ninds]
cb = state.c[binds]
cn = state.c[ninds]
c = state.c

@show cn

if rank(B) != m
return (:Infeasible, SimplexPoint(eltype(c), B, N))

end

xb = B\state.b
x = zeros(eltype(xb),n)
x[binds] = xb
x[ninds] = zeros(eltype(xb),length(ninds))

lam = B'\cb
sn = cn - N'*lam

@show sn

if any(xb .< 0)
return (:Infeasible, SimplexPoint(x, binds, ninds, lam, sn, B, N))

else
if all(sn .>= 0)

return (:Solution, SimplexPoint(x, binds, ninds, lam, sn, B, N))
else

return (:Feasible, SimplexPoint(x, binds, ninds, lam, sn, B, N))
end

end
end

function simplex_step!(state::SimplexState)
get the current point from the new basis
stat,p::SimplexPoint = simplex_point(state)

if stat == :Solution
return (stat, p)

elseif state == :Infeasible
return (:Breakdown, p)

else # we have a BFP
#= This is the Simplex Step! =#

take the Dantzig index to add to basic
qn = findmin(p.sn)[2]
q = p.ninds[qn] # translate index
check that nothing went wrong
@assert all(state.A[:,q] == p.N[:,qn])

d = p.B \ state.A[:,q]
#@show d

TODO, implement an anti-cycling method /
check for stagnation and lack of progress
this checks for unbounded solutions
if all(d .<= eps(eltype(d)))

return (:Degenerate, p)
end

determine the index to remove
xq = p.x[p.binds]./d
ninds = d .< eps(eltype(xq))
xq[d .< eps(eltype(xq))] .= Inf
pb = findmin(xq)[2]
pind = p.binds[pb] # translate index

#@show p.binds, pb, pind, state.bset, q

remove p and add q

2

@assert state.bset[pb] == pind
state.bset[pb] = q

return (stat, p)
end

end

function solve!(state::SimplexState)
PlotRegion.plotregion(state.A, state.b);

@show state.bset;
status, p = simplex_step!(state);
iter = 1;

while status != :Solution
@show state.bset;
@show p.x;

scatter!([p.x[1]],[p.x[2]],
series_annotations=["$(iter)"],marker=(15,0.2,:orange),label="");

status, p = simplex_step!(state);
iter += 1;

end

@show state.bset;
@show p.x;

scatter!([p.x[1]],[p.x[2]],
series_annotations=["$(iter)"],marker=(15,0.2,:red),label="")

end

Problem 1: everything goes well
c1 = [-5.0; -1.0];
A1 = [1.0 1.0;

2.0 0.5];
b1 = [5.0; 8.0];
A1_slacks = [A1 Matrix{Float64}(I,2,2)]
c1_slacks = [c1; 0.0; 0.0];

Problem 2: unbounded, the solution is minus infinite
c2 = [-1.0; -3.0];
A2 = [-2.0 1.0;

-1.0 2.0];
b2 = [2.0; 7.0];
A2_slacks = [A2 Matrix{Float64}(I,2,2)]
c2_slacks = [c2; 0.0; 0.0];

Problem 3: degenerate, it is slower (we are already at the optimal point)
The first BFP is optimal but the algorithm is not aware of that.
c3 =[-(3.0/4.0); 150.0; -(1.0/50.0); 6.0];
A3 = [0.25 -60.0 -(1.0/25.0) 9.0;

0.50 -90.0 (1.0/50.0) 3.0;
0.0 0.0 1.0 0.0];

b3 = [0.0; 0.0; 1.0];
A3_slacks = [A3 Matrix{Float64}(I,3,3)]
c3_slacks = [c3; 0.0; 0.0; 0.0];

Start off with the point (0,0)
state = SimplexState(c1_slacks, A1_slacks, b1, [3; 4]);
solve!(state);� �

Problem 2

Using the codes from class (or your own implementations in another language)
illustrate the behavior of the simplex method on the LP.

minimize −x1 − 3x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7
x ≥ 0

starting at [0, 0]T after converting the problem to standard form.

Use your judgement in reporting the behavior of the method.

3

Figure 1: Problem 1: Region plot with visited vertices.

The standard form is:

minimize −x1 − 3x2

subject to −2x1 + x2 + s1 = 2
−x1 + 2x2 + s2 = 7
x, s ≥ 0

This problem is unbounded. Starting at [0, 0]T the algorithm moves to the vertex
on the top (2) and then on the right (3). Unfortunately because the problem is
unbounded and the objective function decreasing in the unbounded direction, the
solution is not on a vertex. The algorithm is cycling and stays at the vertex 3
indefinitely. A region plot is shown in Figure 2.

Problem 3

Using the codes from class (or your own implementations in another language)
illustrate the behavior of the simplex method on the LP.

minimize −3/4x1 + 150x2 − 1/50x3 + 6x4
subject to 1/4x1 − 60x2 − 1/25x3 + 9x4 ≤ 0

1/2x1 − 90x2 + 1/50x3 + 3x4 ≤ 0
x3 ≤ 1
x ≥ 0

starting at [0, 0, 0, 0]T after converting the problem to standard form.

Use your judgement in reporting the behavior of the method.

4

Figure 2: Problem 2: Region plot with visited vertices.

The standard form is:

minimize −3/4x1 + 150x2 − 1/50x3 + 6x4
subject to 1/4x1 − 60x2 − 1/25x3 + 9x4 + s1 = 0

1/2x1 − 90x2 + 1/50x3 + 3x4 + s2 = 0
x3 + s3 = 1
x ≥ 0
s ≥ 0

The first BFP is optimal but the algorithm is not aware of that because the
problem is degenerate. It is slower because even though we are already at the
optimum, the algorithm moves to other BFPs until one that satisfies the conditions
is found.

Here is the list of traversed vertices:

• state.bset = [5, 6, 7] p.x = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

• state.bset = [1, 6, 7] p.x = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

• state.bset = [1, 2, 7] p.x = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

• state.bset = [1, 3, 7] p.x = [0.0, -0.0, 0.0, 0.0, 0.0, 0.0, 1.0]

Problem 4

Show that if we have:
minimize cT x
subject to Ax ≤ b

x ≥ 0
and b ≥ 0, then x = 0 is always a vertex after converting to standard form.

5

First we convert the problem into standard form.

minimize
x̂

ĉT x̂
subject to Âx̂ = b

x̂ ≥ 0

With

ĉ =
[
c
0

]
; Â =

[
A I

]
; x̂ =

[
x
s

]
We prove that the point with x = 0 is a Basic Feasible Point. First, it is feasible
because Ax = 0 and b ≥ 0. Then, the set β of columns we select for the BFP
are the last columns of Â so that ÂP =

[
I A

]
. Thus B = I. Of course, B

is non-singular. Now we just need to prove that xB is positive. According to
the definition, xB = B−1b = I−1b = b. Because b ≥ 0, xB ≥ 0. Therefore, the
point with x = 0 is a Basic Feasible Point. We also know that BFPs are vertices
of the polytopes. So, the point with x = 0 is always a vertex after converting to
standard form.

6

	Problem 0: Homework checklist
	Problem 1
	Problem 2
	Problem 3
	Problem 4

