Problem 0: Homework checklist

I mainly used the class material, Google, Wikipedia and my previous knowledge.

Problem 1: Steepest descent

(Nocedal and Wright, Exercise 3.6) Let's conclude with a quick problem to show that steepest descent can converge very rapidly! Consider the steepest descent method with exact line search for the function $f(\mathbf{x}) = (1/2)\mathbf{x}^T Q \mathbf{x} - \mathbf{x}^T \mathbf{b}$. Suppose that we know $\mathbf{x}_0 - \mathbf{x}^*$ is parallel to an eigenvector of Q. Show that the method will converge in a single iteration.

 $\mathbf{x}_0 - \mathbf{x}^*$ is parallel to an eigenvector of \boldsymbol{Q} is equivalent to:

 $\exists \gamma \in \mathcal{R}, \lambda \in \mathcal{R}, \mathbf{y} \in \mathcal{R}^n, \quad \mathbf{x}_0 - \mathbf{x}^* = \gamma \mathbf{y} \text{ and } \mathbf{Q} \mathbf{y} = \lambda \mathbf{y} \text{ and } \|\mathbf{y}\| = 1$

From the class material we know that:

$$\mathbf{x}_1 = \mathbf{x}_0 - \alpha \mathbf{g}_0$$
$$\mathbf{g}_0 = \mathbf{Q}\mathbf{x}_0 - \mathbf{b}$$
$$\alpha = \frac{\|\mathbf{g}_0\|^2}{\mathbf{g}_0^T \mathbf{Q} \mathbf{g}_0}$$

In \mathbf{g}_0 , we replace \mathbf{x}_0 by $\gamma \mathbf{y} + \mathbf{x}^*$.

$$egin{aligned} \mathbf{g}_0 &= oldsymbol{Q} \mathbf{x}_0 - \mathbf{b} \ &= oldsymbol{Q} (\gamma \mathbf{y} + \mathbf{x}^*) - \mathbf{b} \ &= \gamma oldsymbol{Q} \mathbf{y} + oldsymbol{Q} \mathbf{x}^* - \mathbf{b} \ &= \gamma \lambda \mathbf{y} + oldsymbol{Q} \mathbf{x}^* - \mathbf{b} \ &= \gamma \lambda \mathbf{y} \end{aligned}$$

In the previous set of equations, $\mathbf{g}^* = \mathbf{Q}\mathbf{x}^* - \mathbf{b} = 0$ because according to the necessary conditions, the gradient at the optimum is equal to zero.

We substitute the value of α and \mathbf{g}_0 in $\mathbf{x}_1 = \mathbf{x}_0 - \alpha \mathbf{g}_0$.

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{x}_0 - \alpha \mathbf{g}_0 \\ &= \mathbf{x}_0 - \frac{\gamma^2 \lambda^2}{\gamma \lambda \mathbf{y}^T \mathbf{Q} \gamma \lambda \mathbf{y}} \times \gamma \lambda \mathbf{y} \\ &= \mathbf{x}_0 - \frac{\gamma^2 \lambda^2}{\gamma^2 \lambda^3} \times \gamma \lambda \mathbf{y} \\ &= \mathbf{x}_0 - \gamma \mathbf{y} \\ &= \mathbf{x}^* \end{aligned}$$

Therefore, the algorithm converges in only one iteration.

Problem 2: LPs in Standard Form

Show that we can solve:

by constructing an LP in standard form.

We convert the infinite norm into bounds:

 $\begin{array}{ccc} \underset{\mathbf{x}}{\operatorname{minimize}} & \|\mathbf{x}\|_{\infty} & \Longleftrightarrow & \underset{t}{\underset{t}{\operatorname{subject to}}} & t \\ \text{subject to} & \|\mathbf{x}\|_{\infty} \leq t \end{array}$

$$\|\mathbf{x}\|_{\infty} \le t \iff \max_{i} \|x_{i}\| \le t$$
$$\iff \forall i \in 1, \dots, n, -t \le x_{i} \le t$$
$$\iff t\mathbf{e} - \mathbf{x} \ge 0, \quad t\mathbf{e} + \mathbf{x} \ge 0, \quad t \ge 0$$

We convert the L1 norm into bounds:

$$\begin{array}{ccc} \underset{\mathbf{x}}{\operatorname{minimize}} & \|\mathbf{x}\|_1 \iff \begin{array}{ccc} \underset{\mathbf{y}}{\operatorname{minimize}} & \mathbf{e}^T \mathbf{y} \\ \underset{\mathbf{y}}{\operatorname{subject to}} & -\mathbf{y} \leq \mathbf{x} \leq \mathbf{y}, \mathbf{y} \geq 0 \end{array}$$

æ

Our initial problem becomes:

minimize
$$\mathbf{e}^T \mathbf{y} + t$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{y} - \mathbf{x} \ge 0$
 $\mathbf{y} + \mathbf{x} \ge 0$
 $\mathbf{y} \ge 0$
 $t\mathbf{e} - \mathbf{x} \ge 0$
 $t\mathbf{e} + \mathbf{x} \ge 0$
 $t \ge 0$

 ${\bf x}$ is unconstrained in sign, we convert it into a pair of positive variables:

$$\exists \mathbf{x}^+ \geq 0, \mathbf{x}^- \geq 0 \quad \text{s.t.} \quad \mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$$

We also add slack variables, the constraints become:

$$Ax^{+} - Ax^{-} = b$$

y - x⁺ + x⁻ - s₁ = 0
y + x⁺ - x⁻ - s₂ = 0
te - x⁺ + x⁻ - s₃ = 0
te + x⁺ - x⁻ - s₄ = 0
x⁺, x⁻, y, s₁, s₂, s₃, s₄, t ≥ 0

Expressed as matrices:

$$\hat{A} = \begin{bmatrix} A & -A & 0 & 0 & 0 & 0 & 0 & 0 \\ -I & I & I & 0 & -I & 0 & 0 & 0 \\ I & -I & I & 0 & 0 & -I & 0 & 0 \\ -I & I & 0 & \mathbf{e} & 0 & 0 & -I & 0 \\ I & -I & 0 & \mathbf{e} & 0 & 0 & 0 & -I \end{bmatrix}$$
$$\hat{\mathbf{x}} = (\mathbf{x}^+, \mathbf{x}^-, \mathbf{y}, t, \mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4)^T$$
$$\hat{\mathbf{b}} = (\mathbf{b}, 0, 0, 0, 0)^T$$
$$\hat{\mathbf{c}} = (0, 0, \mathbf{e}, 1, 0, 0, 0, 0)^T$$

Now the standard form of the initial LP problem is:

$$\begin{array}{ll} \underset{\hat{\mathbf{x}}}{\min \text{imize}} & \hat{\mathbf{c}}^T \hat{\mathbf{x}} \\ \text{subject to} & \hat{\mathbf{A}} \hat{\mathbf{x}} = \hat{\mathbf{b}} \\ & \hat{\mathbf{x}} \ge 0 \end{array}$$

Problem 3: Duality

Show that the these two problems are dual by showing the equivalence of the KKT conditions:

 $\begin{array}{lll} \underset{\mathbf{x}}{\operatorname{minimize}} & \mathbf{c}^{T}\mathbf{x} & \\ \operatorname{subject to} & \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq 0 & \\ \end{array} \quad \quad \begin{array}{ll} \operatorname{maximize} & \mathbf{b}^{T}\boldsymbol{\lambda} \\ & \underset{\boldsymbol{\lambda}}{\operatorname{subject to}} & \mathbf{A}^{T}\boldsymbol{\lambda} \leq \mathbf{c}, \boldsymbol{\lambda} \geq 0 \end{array}.$

We know from the class material that the KKT conditions for the primal problem are:

$$\mathbf{c} = \mathbf{A}^T \boldsymbol{\lambda} + \mathbf{s}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x}^T \mathbf{s} = 0$$
$$\mathbf{s} \ge 0$$
$$\mathbf{x} \ge 0$$

The Lagrangian for the dual problem is:

$$\mathcal{L} = -\mathbf{b}^T \lambda - \mathbf{x}^T (\mathbf{c} - \mathbf{A}^T \lambda)$$

Then the KKT conditions for the dual problem are:

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -\mathbf{b} + \mathbf{A}\mathbf{x} = 0$$
$$\mathbf{A}^T \lambda \le \mathbf{c}$$
$$\mathbf{x} \ge 0$$
$$\mathbf{x}^T (\mathbf{c} - \mathbf{A}^T \lambda) = 0$$

As written in the class, if we substitute the variables as: $\mathbf{s} = \mathbf{c} - \mathbf{A}^T \lambda$, we get:

$$s = c - A^T \lambda$$
$$Ax = b$$
$$s \ge 0$$
$$x \ge 0$$
$$x^T s = 0$$

These conditions are equivalent to the KKT conditions of the primal problem.

Problem 4: Geometry of LPs

(Griva, Sofer, and Nash, Problem 3.12) Consider the system of constraints $A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$ with

	1	4	7	1	0	0		12
A =	2	5	8	0	1	0	, and $\mathbf{b} =$	15
	3	6	9	0	0	1	, and $\mathbf{b} =$	18

Is $\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}^T$ a basic feasible point? Explain your answer precisely in terms of the definition.

First, we check that \mathbf{x} is a feasible point. $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$ so, yes it is a feasible point. With the script given in class, we enumerate all the basic feasible points and \mathbf{x} is not among them. Why? Because the corresponding basis B would be the first three vectors of A.

$$\boldsymbol{B} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

However, B is singular because det B = 0. Thus, by definition it cannot be a basic feasible point.

Problem 5: Using the geometry

(Griva, Sofer, and Nash, Section 4.3, problem 3.13. Suppose that a linear program originally included a free variable x_i where there were no upper-and-lower bounds on its values. As we described in class, this can be converted into a pair of variables x_i^+ and x_i^- such that $x_i^+, x_i^- \ge 0$ and x_i is replaced with the difference $x_i^+ - x_i^-$. Prove that a basic feasible point can have only one of x_i^+ or x_i^- different from zero. (Hint: this is basically a one-line proof once you see the right characterization. I would suggest trying an example.)

Because $\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$, when we convert the problem into standard form, in every equation including \mathbf{x} there are \mathbf{x}^+ and \mathbf{x}^- terms. Thus, in the updated \mathbf{A} matrix, the two columns corresponding respectively to \mathbf{x}^+ and \mathbf{x}^- are going to be opposite vectors (linearly dependent). That's why a basic feasible point can have only one of them, because otherwise, the matrix \mathbf{B} would be singular.