
purdue university · cs 52000
computational optimization

HOMEWORK 2
Mathieu Gaillard
January 28, 2019

Problem 0: Homework checklist

I was out of the university during the whole week, I could not collaborate with
anybody. I mainly used the class material, Google, Wikipedia and my previous
knowledge.

Problem 1: Optimization software

The function we’ll study is the Rosenbrock function:

f(x) = 100(x2 − x2
1)2 + (1− x1)2.

Question 1:

� �
using Plots
plotly(size = (1280, 720));

Consider this function
f = (x, y) -> 100.0*(y - x.ˆ2).ˆ2 + (1 - x).ˆ2;
Create a meshgrid
x = -2:0.05:2;
y = -1:0.05:3;
X = repeat(x', length(y), 1);
Y = repeat(y, 1, length(x));
Evaluate each f(x, y)
Z = map(f, X, Y);

Contour plot
contour(x, y, Z);
Contour plot with the log of the function (to see more details)
contour(x, y, log.(10.0, Z .+ 1.0), fill=true);� �

The contour plot of the Rosenbrock function is in Figure 1. There is also a contour
plot of log(1 + f(x)), which shows more details around the global minimum, in
Figure 2.

Question 2:

Gradient and Hessian of the function.

∇f =
(
−2(1− x1)− 400(x2 − x2

1)x1
200(x2 − x2

1)

)

H =
[
1200x2

1 − 400x2 + 2 −400x1
−400x1 200

]

Question 3:

The minimizer of the Rosenbrock function is the point x∗ =
[
1
1

]
.

1

Figure 1: Contour plot of the Rosenbrock function.

Figure 2: Contour plot of log(1 + f(x)).

Because the Rosenbrock function is a polynomial, it is straightforward that:

∀x ∈ R2, f(x) ≥ 0

In addition to that, we notice that:

f(x∗) = 0

Thus, according to the definition, x∗ is a global minimizer of the Rosenbrock
function. Furthermore, this Wikipedia page states that it is the only global
minimum: https://en.wikipedia.org/wiki/Test_functions_for_optimization.

Question 4:

An optimization package would test a sufficient condition for a strict local min-
imizer at each iteration. There are two conditions: ∇f(x∗) =

→
0 and H (f(x∗))

2

https://en.wikipedia.org/wiki/Test_functions_for_optimization

is positive definite. Of course the result of the gradient cannot be exactly 0, it
would rather stop when it is within an epsilon of zero. Some implementations may
not check that the Hessian matrix is positive definite as it is too time consuming.

Question 5:

� �
using Plots, LinearAlgebra, Random, SparseArrays
using Optim

Rosenbrock function
function f(x)

return (1.0 - x[1])ˆ2 + 100.0 * (x[2] - x[1]ˆ2)ˆ2;
end

function g!(storage::Vector, x::Vector)
storage[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]ˆ2) * x[1];
storage[2] = 200.0 * (x[2] - x[1]ˆ2);

end

function h!(H::Matrix, x::Vector)
H[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]ˆ2
H[1, 2] = -400.0 * x[1]
H[2, 1] = -400.0 * x[1]
H[2, 2] = 200.0

end

Change the initial point if necessary
soln = optimize(f, g!, h!, [0.0, 0.0], GradientDescent())
soln = optimize(f, g!, h!, [0.0, 0.0], BFGS())
soln = optimize(f, g!, h!, [0.0, 0.0], NewtonTrustRegion())� �

Results given by this code are given in Table 1. We can see that Gradient Descent
is never converging, the algorithm stops after 1000 iterations. Perhaps, with more
iterations it could converge, but I did not try as better methods are available for
this problem. BFGS and Newton Trust Region converge every time.

Starting point Method Convergence Calls
[0, 0] GradientDescent False 2532
[0, 0] BFGS True 53
[0, 0] NewtonTrustRegion True 25
[0, 2] GradientDescent False 2531
[0, 2] BFGS True 70
[0, 2] NewtonTrustRegion True 16

[1.5, 2] GradientDescent False 2548
[1.5, 2] BFGS True 34
[1.5, 2] NewtonTrustRegion True 14

Table 1: Convergence of the optimization according to various starting points
and methods.

Problem 2: Optimization theory

Suppose that f : R→ R (i.e. is univariate) and is four times continuously differ-
entiable. Show that the following conditions imply that x∗ is a local minimizer.

i. f ′(x∗) = 0

ii. f ′′(x∗) = 0

iii. f ′′′(x∗) = 0

3

iv. f ′′′′(x∗) > 0

Because f is four times continuously differentiable, f ′′′′ is still positive in a small
neighborhood:

∃r > 0, |x− x∗| < r =⇒ f ′′′′(x) > 0

The fourth order Lagrange form of the Taylor theorem for f in x∗ with h in the
small neighborhood:

∀|h| < r,∃α ∈ [0, 1], f(x∗+h) = f(x∗)+ h

1!f
′(x∗)+h2

2! f
′′(x∗)+h3

3! f
′′′(x∗)+h4

4! f
′′′′(x∗+αh)

Because the first three derivatives are equal to zero:

∀|h| < r,∃α ∈ [0, 1], f(x∗ + h) = f(x∗) + h4

4! f
′′′′(x∗ + αh)

Since x∗+αh is in the small neighborhood in which f ′′′′ is still positive: f ′′′′(x∗+
α h) > 0

|(x∗ + αh)− x∗| = |αh| < r =⇒ f ′′′′(x∗ + αh) > 0

Therefore, x∗ is a strict local minimizer:

∀|h| < r, f(x∗ + h) > f(x∗)

Q.E.D.

Problem 3: Optimization software

The function we’ll study is the Booth function:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2.

� �
using Plots
plotly(size = (1280, 720));

Consider this function
f = (x, y) -> (x + 2.0*y - 7.0)ˆ2 + (2.0*x + y - 5.0)ˆ2;
Create a meshgrid
x = -1:0.05:3;
y = 1:0.05:5;
X = repeat(x', length(y), 1);
Y = repeat(y, 1, length(x));
Evaluate each f(x, y)
Z = map(f, X, Y);

Contour plot
contour(x, y, Z);� �

The contour plot of the Booth function is in Figure 3.

Question 2:

Gradient and Hessian of the function.

∇f =
(

10x1 + 8x2 − 34
8x1 + 10x2 − 38

)

H =
[
10 8
8 10

]

4

Figure 3: Contour plot of the Booth function.

Question 3:

The minimizer of the Booth function is the point x∗ =
[
1
3

]
.

Because the Booth function is a polynomial, it is straightforward that:

∀x ∈ R2, f(x) ≥ 0

In addition to that, we notice that:

f(x∗) = 0

Thus, according to the definition, x∗ is a global minimizer of the Booth function.
Furthermore, this Wikipedia page states that it is the only global minimum:
https://en.wikipedia.org/wiki/Test_functions_for_optimization.

Question 4:

See Problem 1 Question 4 as it is the same answer.

Question 5:

� �
using Plots, LinearAlgebra, Random, SparseArrays
using Optim

example of Booth function
function f(x)

return (x[1] + 2.0*x[2] - 7.0)ˆ2 + (2.0*x[1] + x[2] - 5.0)ˆ2;
end

function g!(storage::Vector, x::Vector)
storage[1] = 10.0*x[1] + 8.0*x[2] - 34;
storage[2] = 8.0*x[1] + 10.0*x[2] - 38;

end

function h!(H::Matrix, x::Vector)
H[1, 1] = 10.0;
H[1, 2] = 8.0;
H[2, 1] = 8.0;

5

https://en.wikipedia.org/wiki/Test_functions_for_optimization

H[2, 2] = 10.0;
end

Uncomment the necessary optimizer before running the script
soln = optimize(f, g!, h!, [3.0, 3.0], NelderMead())
soln = optimize(f, g!, h!, [3.0, 3.0], SimulatedAnnealing())
soln = optimize(f, g!, h!, [3.0, 3.0], BFGS())
soln = optimize(f, g!, h!, [3.0, 3.0], LBFGS())
soln = optimize(f, g!, h!, [3.0, 3.0], ConjugateGradient())
soln = optimize(f, g!, h!, [3.0, 3.0], GradientDescent())
soln = optimize(f, g!, h!, [3.0, 3.0], MomentumGradientDescent())
soln = optimize(f, g!, h!, [3.0, 3.0], AcceleratedGradientDescent())
soln = optimize(f, g!, h!, [3.0, 3.0], Newton())
soln = optimize(f, g!, h!, [3.0, 3.0], NewtonTrustRegion())� �

I tried every method implemented in Optim.jl;

The following methods only require the function:

• NelderMead

• SimulatedAnnealing

The following methods require the function and the gradient:

• BFGS

• LBFGS

• ConjugateGradient

• GradientDescent

• MomentumGradientDescent

• AcceleratedGradientDescent

The following methods require the function, the gradient and the Hessian matrix:

• Newton

• NewtonTrustRegion

The number of iterations when optimizing the Booth function starting from the
point [3, 3] with all the methods above are detailed in Table 2. Simulated Annealing
does not converge after 1000 iterations. The method that does not require the
gradient and takes the most iterations is NelderMead. The method that requires
only the gradient and takes the most iterations is MomentumGradientDescent.
The method that requires the gradient and Hessian matrix and that takes the
most iterations is NewtonTrustRegion.

Method Convergence Iterations Calls
NelderMead True 36 74
SimulatedAnnealing False 1000 1001
BFGS True 2 5
LBFGS True 2 7
ConjugateGradient True 2 5
GradientDescent True 17 51
MomentumGradientDescent True 19 71
AcceleratedGradientDescent True 11 40
Newton True 1 2
NewtonTrustRegion True 2 3

Table 2: Number of iterations when optimizing the Booth function starting from
the point [3, 3].

6

Problem 4: Convexity

Suppose that f(x) = xTQx, where Q is an n× n symmetric positive semi-definite
matrix. Show that this function is convex using the definition of convexity, which
can be equivalently reformulated:

f(y + α(x− y))− αf(x)− (1− α)f(y) ≤ 0

for all 0 ≤ α ≤ 1 and all x, y ∈ Rn.

f(y+α(x− y))− αf(x)− (1− α)f(y)

= (y + α(x− y))TQ(y + α(x− y))− αxTQx− (1− α)yTQy

= yTQy + αyTQx− αyTQy + αxTQy − αyTQy

+ α2xTQx− α2xTQy − α2yTQx+ α2yTQy

− αxTQx− (1− α)yTQy

= α(α− 1)(yTQy − yTQx− xTQy + xTQx)

= α(α− 1)(x− y)TQ(x− y)

Because Q is an n× n symmetric positive semi-definite matrix:

∀(x, y) ∈ Rn, (x− y)TQ(x− y) ≥ 0

Because α ∈ [0, 1]:
∀α ∈ [0, 1], α(α− 1) ≤ 0

Therefore:

∀α ∈ [0, 1],∀(x, y) ∈ Rn, f(y + α(x− y))− αf(x)− (1− α)f(y) ≤ 0

Q.E.D.

7

	Problem 0: Homework checklist
	Problem 1: Optimization software
	Question 1:
	Question 2:
	Question 3:
	Question 4:
	Question 5:

	Problem 2: Optimization theory
	Problem 3: Optimization software
	Question 2:
	Question 3:
	Question 4:
	Question 5:

	Problem 4: Convexity

