
purdue university · cs 52000
computational optimization

HOMEWORK 1
Mathieu Gaillard
January 21, 2019

Collaborators

1. Wikipedia

2. https://math.stackexchange.com/questions/2880568

3. Yichen Sheng

Problem 1: Some quick, simple theory

Question 1:

What is 1/ log(x) when x = 109?
1

log(109) = 1
9

What is the limit of the sequence 1/ log(x) as x→∞?

lim
x→∞

1
log(x) = 0

Question 2:

Show, using the definition, that the sequence 1 + k−k converges superlinearly to 1.

Xk = 1 + k−k

According to the definition of the superlinear convergence, we want to show that:

lim
x→∞

‖Xk+1 −X∗‖
‖Xk −X∗‖

= 0

Let’s transform this expression to something easier to deal with.
‖Xk+1 −X∗‖
‖Xk −X∗‖

= ‖1 + (k + 1)−k−1 − 1‖
‖1 + k−k − 1‖

= (k + 1)−k−1

k−k
because k > 0

= 1
k
×
(
k + 1
k

)−k−1

This form is now suitable for computing the limit. Because:

lim
x→∞

1
k

= 0 and lim
x→∞

(
k + 1
k

)−k−1
= e−1 (proved on page 2)

Therefore:

lim
x→∞

‖Xk+1 −X∗‖
‖Xk −X∗‖

= lim
x→∞

1
k
×
(
k + 1
k

)−k−1
= 0

Q.E.D.

1

https://math.stackexchange.com/questions/2880568

Annex to question 2:

Concerning the limit of
(
k+1
k

)−k−1, following is the proof. First, we modify it, so
that the limit is easier to compute.

(
k + 1
k

)−k−1
= e− ln (k+1

k)(k+1)

We want to show that the limit of ln
(
k+1
k

)
(k + 1) is 1.

lim
x→∞

ln
(
k + 1
k

)
(k + 1) = lim

x→∞
k ln

(
k + 1
k

)
+ ln

(
k + 1
k

)

= lim
x→∞

k ln
(
k + 1
k

)
because lim

x→∞

(
k + 1
k

)
= 0

= lim
x→∞

ln
(
k+1
k

)
1
k

Then, we use l’Hôpital’s rule:

lim
x→∞

ln
(
k+1
k

)
1
k

= lim
x→∞

1
k+1 −

1
k

− 1
k2

= lim
x→∞

k2

k
− k2

k + 1

= lim
x→∞

k2(k + 1)− k3

k(k + 1)

= lim
x→∞

k2

k2 + k

= 1

Therefore:

lim
x→∞

(
k + 1
k

)−k−1
= e−1

Question 3:

Suppose we have a sequence Xk+1 =
√
Xk. Show that this sequence converges

for all positive inputs. Show further the rate.

First, we express the recurrence relation as a closed form. Following is the idea
for X2:

X2 =
√
X1 =

√√
X0 = (X0) 1

2
1
2 = (X0) 1

4 = 4
√
X0

When we generalize, we have the following closed-form:

Xk+1 = 2k√
X0 = (X0)

1
2k

To study the convergence of this sequence, we study the convergence of the se-
quence of functions fk(x) = x

1
2k onR+. We only study the point-wise convergence,

2

Figure 1: Plot of log ‖Xk − 1‖ according to k. We can see a linear relation.

as it is enough for our application.

R+ : lim
k→∞

fk(x) = f(x)

x = 0 : lim
k→∞

0
1

2k = 0

x > 0 : lim
k→∞

x
1

2k = 1

Therefore:

f(x) =
{

0, if x = 0
1, if x > 0

And:
lim
k→∞

Xk = 1

Another way to prove this result is to use the Banach fixed-point theorem. R+ is
complete. The square root function is stable on]0; 1[, we can prove that with
simple inequalities. It is also a contraction mapping on [1; +∞[, we can prove
that with the mean value inequality. Thus, the sequence Xk converges to the
fixed-point, which is in x = 1 because

√
1 = 1.

Concerning the converging rate, by plotting it on Microsoft Excel (see 1), we
conjecture that it is a Q-linear convergence with a rate of 1/2.

We want to show that:

‖ 2k+1√
x− 1‖

‖ 2k√
x− 1‖

≤ ρ for all k sufficiently large

For that we compute:

lim
k→∞

‖ 2k+1√
x− 1‖

‖ 2k√
x− 1‖

We use a change of variable t = 2k√
x and x = t2

k , which are both converging
expressions. It has been proved earlier that t→ 1.

lim
k→∞

‖ 2k+1√
x− 1‖

‖ 2k√
x− 1‖

= lim
t→1

‖
√
t− 1‖
‖t− 1‖

3

We know that in the vicinity of 0,
√

1 + x ∼ (1+ x
2). So, around 1,

√
x ∼ (1+ x−1

2)

lim
t→1

‖
√
t− 1‖
‖t− 1‖ = lim

t→1

‖1 + t−1
2 − 1‖

‖t− 1‖ = lim
t→1

1
2‖t− 1‖
‖t− 1‖ = 1

2

Q.E.D.

The sequence Xk+1 =
√
Xk converges linearly with a rate 1/2.

Problem 2: Convergence theory

Consider the function f : R2 → R defined by f(x) = ‖x‖2. Show that the sequence
of iterates {xk} defined by:

xk =
(

1 + 1
2k

)[
cos k
sin k

]
satisfies f(xk+1) < f(xk) for k = 0, 1, Show that every point on the unit
circle is a limit point for xk.

Let’s compute the values of f(xk) and f(xk+1).

f(xk) =
∥∥∥∥(1 + 1

2k

)[
cos k
sin k

]∥∥∥∥2

=
(

1 + 1
2k

)2
(cos2 k + sin2 k)

=
(

1 + 1
2k

)2

In the same way:

f(xk+1) =
(

1 + 1
2k+1

)2

By construction, we can show that f(xk+1) < f(xk) is true for k = 0, 1, . . .

k < k + 1
2k < 2k+1

1
2k >

1
2k+1

1 + 1
2k > 1 + 1

2k+1(
1 + 1

2k

)2
>

(
1 + 1

2k+1

)2

f(xk) > f(xk+1)

Q.E.D.

Now, we want to show that every point on the unit circle is a limit point for xk.
In other words, xk is dense on the unit circle. Thanks to the first part of the
question, we know that xk can be as close as needed to the unit circle because
f(xk+1) < f(xk) and limk→∞ f(xk) = 1. Basically, if we are not close enough,
we know that we just need to increase k.

We notice that:

xk =
(

1 + 1
2k

)[
cos k
sin k

]
=
(

1 + 1
2k

)[
cos(k mod 2π)
sin(k mod 2π)

]
4

We simply need to prove that {k mod 2π : n ∈ N} is dense in [0; 2π]. Intuitively
the idea is that because 2π is irrational, with k increasing, k mod 2π is always
going to land somewhere else in the interval. Thus, for any point q in the interval,
it is always possible to find a k so that k mod 2π is as close as needed to q. A
better proof is given later. Back to the initial problem, we want to show that for
any point on the circle, we can find a subsequence that converges to this point.

We choose this point p =
[
cos θ
sin θ

]
. Then, because {k mod 2π : n ∈ N} is dense

in [0; 2π], there exists a subsequence of integers nk such that θ = limk→∞ nk
mod 2π. Finally, because cos and sin are continuous, xnk

converges to p.

I don’t have enough time before the deadline to formalize the proof that {k
mod 2π : n ∈ N} is dense in [0; 2π]. Here are the two inspirations I found for this
problem:

1. https://math.stackexchange.com/questions/39299

2. https://math.stackexchange.com/questions/1916529

We can use the Dirichlet Approximation Theorem to get a multiple of 2π that
makes k mod 2π close enough to θ. Or we can use the fact that 1

2π is irrational
so Z + 2πZ is dense in R. It is the same principal as when we show that cos is
dense in [−1; 1].

Problem 3: Raptors in space

Question 1:

Modify the the Raptor chase example function to compute the survival time of a
human in a three-dimensional raptor problem. Show your modified function, and
show the survival time when running directly at the slow raptor.

Following is my code. I added one raptor and used 3D vectors instead of 2D
vectors. Instead of one angle, I used two angles: latitude and longitude.� �

using Plots
plotly(size = (1280, 1024));

vhuman = 6.0;
vraptor0 = 10.0; # the slow raptor velocity in m/s
vraptor = 15.0; # the regular raptors velocity in m/s

raptor_distance = 20.0;

raptor_min_distance = 0.2; # a raptor within 20 cm can attack
tmax = 3.0; # the maximum time in seconds
nsteps = 100000;� �

This function will compute the derivatives of the positions of the human and the
raptors� �

function compute_derivatives(theta, phi, h, r0, r1, r2, r3)
dh = [sin(phi) * cos(theta),

sin(phi) * sin(theta),
cos(phi)] * vhuman;

dr0 = (h-r0)/norm(h-r0)*vraptor0;
dr1 = (h-r1)/norm(h-r1)*vraptor;
dr2 = (h-r2)/norm(h-r2)*vraptor;
dr3 = (h-r3)/norm(h-r3)*vraptor;
return dh, dr0, dr1, dr2, dr3;

end� �
5

https://math.stackexchange.com/questions/39299
https://math.stackexchange.com/questions/1916529

This function will use forward Euler to simulate the Raptors� �
function simulate_raptors(theta, phi; output::Bool = true)

initial positions
h = [0.0, 0.0, 0.0];
r0 = [1.0, 0.0, 0.0]*raptor_distance;
r1 = [-1.0/3.0, sqrt(8.0)/3.0, 0.0]*raptor_distance;
r2 = [-1.0/3.0, -sqrt(2.0)/3.0, sqrt(2.0/3.0)]*raptor_distance;
r3 = [-1.0/3.0, -sqrt(2.0)/3.0, -sqrt(2.0/3.0)]*raptor_distance;

how much time elapsed
dt = tmax/nsteps;
t = 0.0;

hhist = zeros(3,nsteps+1);
r0hist = zeros(3,nsteps+1);
r1hist = zeros(3,nsteps+2);
r2hist = zeros(3,nsteps+2);
r3hist = zeros(3,nsteps+2);

hhist[:,1] = h;
r0hist[:,1] = r0;
r1hist[:,1] = r1;
r2hist[:,1] = r2;
r3hist[:,1] = r3;

for i=1:nsteps
dh, dr0, dr1, dr2, dr3 = compute_derivatives(theta,

phi, h, r0, r1, r2, r3);

h += dh*dt;
r0 += dr0*dt;
r1 += dr1*dt;
r2 += dr2*dt;
r3 += dr3*dt;
t += dt;

hhist[:,i+1] = h;
r0hist[:,i+1] = r0;
r1hist[:,i+1] = r1;
r2hist[:,i+1] = r2;
r3hist[:,i+1] = r3;

if norm(r0-h) <= raptor_min_distance ||
norm(r1-h) <= raptor_min_distance ||
norm(r2-h) <= raptor_min_distance ||
norm(r3-h) <= raptor_min_distance
if output

@printf("The raptors caught the human in \%f seconds\n", t);
end

truncate the history
hhist = hhist[:,1:i+1];
r0hist = r0hist[:,1:i+1];
r1hist = r1hist[:,1:i+1];
r2hist = r2hist[:,1:i+1];
r3hist = r3hist[:,1:i+1];

break
end

end
return hhist, r0hist, r1hist, r2hist, r3hist;

end� �
This function will display the simulation in a 3D plot.� �

function show_raptors(theta, phi; args...)
hhist, r0h, r1h, r2h, r3h = simulate_raptors(theta, phi; args...);
plot(vec(hhist[1,:]), vec(hhist[2,:]), vec(hhist[3,:]),linewidth=3);
plot!(vec(r0h[1,:]), vec(r0h[2,:]), vec(r0h[3,:]),color=:red);
plot!(vec(r1h[1,:]), vec(r1h[2,:]), vec(r1h[3,:]),color=:red);
plot!(vec(r2h[1,:]), vec(r2h[2,:]), vec(r2h[3,:]),color=:red);
plot!(vec(r3h[1,:]), vec(r3h[2,:]), vec(r3h[3,:]),color=:red);
plot!(xlim=[-6.67, 20.0], ylim=[-9.43, 18.9],zlim=[-16.3, 16.3]);
3D annotations are not supported
title!(@sprintf("Survival time = \%f sec",(length(hhist[2,:]) - 1)*tmax/nsteps));

end� �
6

Figure 2: Survival time when running directly at the slow raptor

Parameters when the humain is headed towards the wounded raptor� �
theta = 0.0;
phi = pi / 2.0;
show_raptors(theta, phi);� �

When running directly at the slow raptor, the survival time is about 1.24 seconds.
(See figure 2)

Question 2:

Utilize a grid-search strategy to determine the best angle for the human to run to
maximize the survival time. Show the angle.

7

I changed the simulation function to only output the survival time.� �
function simulate_raptors_no_histogram(theta, phi)

initial positions
h = [0.0, 0.0, 0.0];
r0 = [1.0, 0.0, 0.0]*raptor_distance;
r1 = [-1.0/3.0, sqrt(8.0)/3.0, 0.0]*raptor_distance;
r2 = [-1.0/3.0, -sqrt(2.0)/3.0, sqrt(2.0/3.0)]*raptor_distance;
r3 = [-1.0/3.0, -sqrt(2.0)/3.0, -sqrt(2.0/3.0)]*raptor_distance;

how much time elapsed
dt = tmax/nsteps;
t = 0.0;

for i=1:nsteps
dh, dr0, dr1, dr2, dr3 = compute_derivatives(

theta, phi, h, r0, r1, r2, r3);
h += dh*dt;
r0 += dr0*dt;
r1 += dr1*dt;
r2 += dr2*dt;
r3 += dr3*dt;
t += dt;

if norm(r0-h) <= raptor_min_distance ||
norm(r1-h) <= raptor_min_distance ||
norm(r2-h) <= raptor_min_distance ||
norm(r3-h) <= raptor_min_distance
Return the elapsed time
return t;

break
end

end

return t;
end� �

Following is the grid search code:� �
Grid search for the best parameters
Parameters are near one solution (to increase the precision)
theta = 0.347:0.0001:0.351; # 0:0.1:2.0*pi (in the general case)
phi = 1.033:0.0001:1.037; # 0:0.05:pi (in the general case)
time = zeros(length(theta), length(phi));

for i = 1:length(theta)
for j = 1:length(phi)

time[i, j] = simulate_raptors_no_histogram(theta[i], phi[j]);
end
println(i, "/" , length(theta));

end

(max_time, index) = findmax(time);
println("Best Theta ", theta[index[1]], " rad");
println("Best Phi ", phi[index[2]], " rad");
println("Survival time ", max_time, " sec");
surface(theta, phi, time);

best_theta = theta[index[1]];
best_phi = phi[index[2]];
show_raptors(best_theta, best_phi);� �

Figure 3 is a plot of the surface of the function. We can see that there are 3
global maxima. We can choose one of them as solution to our problem. One
possible solution to our problem is shown in figure 4. We can notice that 3
raptors are eating the human almost at the same time. The parameters are:
Θ = 0.3493 and φ = 1.0356. The maximum survival time is 1.5599 seconds. I
ran the simulation with 100,000 steps and a maximum time of 3.0 seconds.

8

Figure 3: Surface of the function

Question 3:

Discuss the major challenge for solving this problem with the current strategy in
four dimensions.

The major challenge with the grid search is that the complexity is in O(nk), with
n being the grid size and k the dimension of the problem. Thus, every time we
add a dimension, the problem is n times harder. For 2, 3 or 4 dimensions it is
still tractable, however with more dimensions, for instance k = 20, it is too hard
to optimize the function because the search space is too vast.

9

Figure 4: One of the 3 best configurations to maximize survival time.

10

	Collaborators
	Problem 1: Some quick, simple theory
	Question 1:
	Question 2:
	Annex to question 2:
	Question 3:

	Problem 2: Convergence theory
	Problem 3: Raptors in space
	Question 1:
	Question 2:
	Question 3:

