
purdue university · cs 52000
computational optimization

FINAL REPORT
Mathieu Gaillard, Yichen Sheng

April 29, 2019

Abstract

We implemented a Primal-Dual Interior Point LP Solver in Julia. It features:

• Basic presolver (removes zero rows in matrix A)

• Mehrotra algorithm to form the step equation

• Normal equations to solve the step equation

• Cholesky factorization and corresponding solvers

We tested it on a set of problems from the University of Florida Sparse Matrix
repository. All of them can be solved with at least 1e-2 tolerance. Some are
much better, e.g. 1e-7. Detailed tolerance results are listed in experiment section.
Although we cannot solve all of them with a very high precision, our code might
be robust enough for general applications.

Problem

In this project we focus on solving Linear programming problems in standard
form:

minimize
x

cTx
subject to Ax = b

x ≥ 0
(1)

where c and x are vectors in Rn, b is a vector in Rm, and A is an m× n matrix.
The two constraints Ax = b and x ≥ 0 define a convex polytope over which the
objective function is minimized.

If x satisfies the constraints Ax = b and x ≥ 0 then we call it a feasible point.
The set of all feasible points is called the feasible set. Usually m ≤ n, because
otherwise, the system would be over-determined and the feasible set could be
empty.

It’s always possible to convert a problem with the constraint Ax ≤ b to a problem
in standard form with Ax = b. For that we can add slack and surplus variables
to the vector x.

The dual form of the linear program above is:

maximize
λ

bTλ
subject to ATλ+ s = c

s ≥ 0
(2)

where λ is a vector in Rm and s is a vector in Rn. λ and s are respectively called
the dual variables and dual slacks.

We call the first problem (1) the Primal form and the second problem (2) the Dual
form. The two problems together are called the primal-dual pair. Primal-Dual
algorithms take advantages of the relations between the two forms to solve both
of them efficiently. s

1

Method

The optimality conditions for both problems 1 and 2 are the KKT conditions:

ATλ+ s = c

Ax = b

xi ∗ si = 0

(x, s) ≥ 0

Note that the optimality conditions are the same for both problems. It is the
fundamental relationship between the primal and the dual problems.

The main idea of the primal-dual interior-point method is to apply a variant of
Newton’s method to the equality conditions in the KKT conditions. To make sure
the inequality constraint with x and s is always strictly true, the search direction
is biased and a line search method is used at every iteration. To successfully use
Newton’s method we build a function F , when the value of this function is zero,
it means we have found the solution of the linear programming problem.

F (x, λ, s) =

ATλ+ s− c
Ax− b
XSe

 = 0

where X = diag(x) and S = diag(s)

We use a modified version of Newton’s method to find the 0 of function F . Because
we want to stay feasible and avoid hitting some constraint boundary too early,
which will affect the convergence speed, we bias the step direction and perform
a line search. At each iteration, Newton’s method builds a linear model of the
function around the current point and solve the following system to get the step
direction:

 0 AT I
A 0 0
S 0 X

∆x

∆λ

∆s

 =

 −rc−rb
−rxs


Usually a full step along this direction is not possible because it would violate
the bound (x, s) ≥ 0. By using a line search we can circumvent this problem.

(x, λ, s) + α(∆x,∆λ,∆s)

Depending on the specific variant of Newton’s method implemented rc, rb and
rxs take specific values. The way to pick α is also dependent on the method. We
give more details on our own implementation in the next section.

Implementation details

Presolving

Currently, we remove zero rows in A and corresponding rows in b. We noticed
that in some problems without this presolving step, the matrix A is singular.

2

Since it has no consequence on x, which remains the same, it is straightforward
to implement.

Other strategies are detailed in [2] on page 231. We could remove zero columns
because it is not constraining the corresponding row in x. We could look for
duplicate rows in A and merge them in order to reduce the size of the matrix
by 1. If a row contains only one element, the solution of the equation Ax = b is
straightforward for this variable and we can remove the corresponding row and
column from A.

Conversion to standard form

The conversion process is to convert the problem from:

minimize
x

cTx
subject to Ax = b

x ≥ low
x ≤ high

to this form:
minimize

x
c′Tx′

subject to A′x′ = b′
x′ ≥ 0

As for x ≥ low, we can shift x: x′ = x− low, x′ ≥ 0. But we also need to shift it
back after finding an optimal standard x′.

As for x ≤ high, we can add slacks as learned from class. Also, we need to change
c to c′, A to A′, b to b′ to have corresponding terms for slacks.

When implementing this algorithm, we also find there are some practical issues
since there are some constraints that are ineffective: low is 0.0 and high is ∞. We
treated these constraints as ineffective constraints since they are not useless for
finding the optimal standard x. Thus we skip these constraints.

Starting point

We implemented the method given in [2] on page 224. Although any starting
point with x, s ≥ 0 could theoretically work with our infeasible interior point
algorithm, having a starting point with nice properties is more convenient and
considerably reduce the number of iterations needed to solve the problem.

We solve these two constrained least norm problems:

minimize
x

1
2 ‖x‖

2

subject to Ax = b

minimize
λ,s

1
2 ‖s‖

2

subject to ATλ+ s = c

The resulting (x, λ, s) are the vectors of least norm for which the two constraints
are satisfied. These constraints are also the first two residuals rb and rc of the
step equation.

To solve these two optimization problems we use an augmented Lagrangian system.

For the first problem:

L(x, λ) = 1
2xTx + λT (Ax− b)

3

∂L
∂x = x + ATλ = 0

∂L
∂λ

= Ax− b = 0

The augmented system is: [
I AT

A 0

](
x
λ

)
=
[

0
b

]

For the second problem, we pack the two variables in one vector and we use the
same augmented Lagrangian system:

ATλ+ s− c ≡
[
AT I

](λ
s

)
= c ≡ A′x′ = c

 I 0 A
0 I I

AT I 0

λs
z

 =

0
0
c


Then, the starting point is defined as:

(x0, λ0, s0) = (x + δ̂xe, λ, s + δ̂se)

The computation of deltax and deltas is detailed in [1] (on page 589, section 7).

δx = max(−1.5×min(xi), 0)

δs = max(−1.5×min(si), 0)

δ̂x = δx + 0.5× (x + δxe)T (s + δse)∑n
1 (s + δs)

δ̂s = δs + 0.5× (x + δxe)T (s + δse)∑n
1 (x + δx)

We compared this method against a starting point of the form (ζe, 0, ζe) with
ζ = 1 or ζ = 128. We noticed a significant decrease in the number of iterations
needed to solve the problem.

Step equation

The book provided a primal-dual framework and three forms of the step equation.
We have implemented all of them.

4

First form

Form 1 is directly coming from KKT conditions. 0 A 0
AT 0 I
S 0 X

∆x
∆λ
∆s

 =

 −rb
−rc
−rxs


where rxs = XSe− σµe, σ ∈ [0, 1], µ = xT s/n in each iteration.

Denote M =

 0 A 0
AT 0 I

AT I 0

. In practice, we find when x is very close to minimizer,

M will become ill, which makes

∆λ
∆x
∆s

 not solved precisely if we use the built in

inversion in Julia to solve this system. M is not exactly symmetric, but it is close
to symmetric. If it were symmetric, it would give us a lot of benefits. Therefore,
the author gives us the second form.

Second form

[
0 A

AT −D−2

](
∆λ
∆x

)
=
[

−rb
−rc + X−1rxs

]
∆s = −X−1(rxs + S∆x)

where D = S−
1
2 X

1
2 . Denote M ′ =

[
0 A

AT −D−2

]
. We have tried to use Julia

built-in Cholesky to factorize M ′, and then solve LL’ x = b. This method is the
fastest in this way among the three, but we find it is not stable. It can only solve
3 small problems in the testing problems. Especially for Cholesky factorization,
the built-in Cholesky is able to solve symmetric positive-definite matrix. It suffers
for the illness of M ′ when x is close to minimizer. Then we further explored the
third form: normal equations form.

Normal equations form

AD2AT∆λ = −rb + A(−S−1Xrc + S−1rxs)
∆s = −rc −AT∆λ
∆x = −S−1(rxs + X∆s)

This form has some good benefits for solving the systems stable. AD2AT is easy
to prove that it is symmetric semi-definite positive. Then we can use Cholesky
factorization to solve ∆λ.

But still we cannot directly use built-in Cholesky function due to illness on the
pivot values. In practice, we found that sometimes in the L matrix, some pivots are
too large compared to other some small pivots, which makes the result unstable.
Thus, we implemented two ways discussed in the book: skip the small pivots or
switch the small pivot with a very large pivot to deal with this problem.

5

Cholesky factorization

Instead of the built-in Cholesky in Julia, we implemented two different Cholesky
factorization process to deal with small pivots. In the book, they claimed theo-
retically they are identical, which is the same as our experiments. The two are
skipping the small pivots, setting the column to be zero and replacing small pivots
with very large number like 1064. To define what is small, we did the same as the
book. Set up a tolerance, track the biggest pivot max_pivot until that iteration.
If current pivot is smaller than max_pivot, then we skip or replace it. Otherwise,
it is the same as traditional Cholesky. Here are the two implementations:� �

function cholesky_skip(M, tol=default_tol)
m,n = size(M)
@assert m==n "To factorize, M should be a squared matrix"

L = zeros(m,m)
max_pivot = Float64(0.0)

for i in 1:m
max_pivot = max(max_pivot, M[i,i])
if M[i,i] >= max_pivot * tol

L[i,i] = sqrt(M[i,i])
for j in i + 1 : m

L[j,i] = M[j,i] / L[i,i]
for k in i+1 : j

M[j,k] = M[j,k] - L[j,i] * L[k,i]
end

end
else

skip
continue

end
end
return L

end

function cholesky_big(M, tol=default_tol)
m,n = size(M)
@assert m==n "To factorize, M should be a squared matrix"

L = zeros(m,m)
println("Type of L: ",typeof(L))
max_pivot = 0.0
for i in 1:m

max_pivot = max(max_pivot, M[i,i])
if M[i,i] >= max_pivot * tol

L[i,i] = sqrt(M[i,i])
for j in i + 1 : m

L[j,i] = M[j,i] / L[i,i]
for k in i+1 : j

M[j,k] = M[j,k] - L[j,i] * L[k,i]
end

end
else

L[i,i] = Float64(1e64)
L[i+1:m, i] .= Float64(1e-64)
for j in i + 1 : m

for k in i+1 : j
M[j,k] = M[j,k] - Float64(1e-64)

end
end

end
end
return L

end� �
Heuristically, "skip" is a little faster than "big", so our final version uses skip.
Our process is slower than the built-in cholesky. Also, the result lower triangular
matrix is not exact triangular. It is trapozoid shape, thus we also need a solver
to efficiently solve it. Thus we also implemented the co-responding solver for
trapozoid shape, which is the same process as L x = b, but we set xk = 0 if it
meets zero pivots.

6

Pick alpha

We compute alpha according to the Mehrotra method given in [2] in chapter
10. Alpha is computed twice: the first time during the predictor step to get an
estimate of sigma, and the second time after the corrector step as part of the line
search.

During after the predictor step, we compute αaff such that:

αpriaff = arg max
α∈[0,1]

(xk + α∆xaff ≥ 0)

Where xk is the current value of x and ∆xaff is the direction computed in the
predictor step.

αdualaff = arg max
α∈[0,1]

(sk + α∆saff ≥ 0)

Where sk is the current value of s and ∆saff is the direction computed in the
predictor step.

To compute this is Julia, we are iterating on every negative component of x,
looking for the minimum value such that α = −xk

i

∆saff . Following is the code we
use:� �

function alpha_max(x, dx, hi = 1.0)
n = length(x)
alpha = hi
ind = -1

for i=1:n
if dx[i] < 0.0

curr_alpha = -x[i]/dx[i]
if curr_alpha < alpha

alpha = curr_alpha
ind = i

end
end

end

return alpha, ind
end� �

To compute alpha during the line search step, we implemented one of the heuristic
given in the book [2] on page 205.

First we compute αmax such that:

αprimax = arg max
α≥0]

(xk + α∆xk ≥ 0)

Where xk is the current value of x and ∆xaff is the averaged direction computed
in the predictor-corrector step.

αdualmax = arg max
α≥0

(sk + α∆sk ≥ 0)

Where sk is the current value of s and ∆saff is the averaged direction computed
in the predictor-corrector step.

Given a parameter γf (equal to 0.05 in our implementation), we compute:

µ+ = (xk + αprimax∆xk)T (sk + αdualmax∆sk)/n

For the particular index i for which xki + αprimax∆xki = 0, compute fpri:

fpri = 1
αprimax∆xki

(
γfµ+

ski + αdualmax∆ski
− xki

)
7

For the particular index i for which ski + αdualmax∆ski = 0, compute fdual:

fdual = 1
αdualmax∆ski

(
γfµ+

xki + αprimax∆xki
− ski

)

Then, set:
αprik = max(1− γf , fpri)αprimax

αdualk = max(1− γf , fdual)αdualmax

We noticed a significant increase in speed when using this heuristic. However, on
the contrary of what is written in the book, we did not notice any improvement
in robustness.

Predictor-corrector method

Predictor-corrector is a smarter way to pick step direction using second order
directions. The procedure is to first solve the affine-scaling direction. In form 1,
we have:

 0 A 0
AT 0 I
S 0 X

∆x
∆λ
∆s

 =

 −rb
−rc
−rxs


where rxs = XSe − σµe. Set σ = 0, we get affine-scaling direction. Then, we
pick alpha_x and alpha_dual for standard x and standard s. After that, we can
measure the "quality" of this direction by computing

µaff = ((xs+ αx ∗ dxaffine)T (s+ αaffine ∗ dsaffine)/n

Use this µaff we can adaptively choose a better sigma:

σ = (µaff
µ

)3

Use this σ to solve the linear system:

 0 A 0
AT 0 I
S 0 X

∆xcc
∆x
∆s

 =

 0
0

σµe−∆Xaff∆Saffe


We can compute the corrector. Add this corrector to affine-scaling direction. We
get the better direction.

End condition

When running the algorithm, the user gives a tolerance tol. Its value is very small:
usually from 10−4 up to 10−8. The iterative algorithm ends when:

µ = xT s
n
≤ tol

8

∥∥∥∥∥∥
ATλ+ s− c

Ax− b
xT s

∥∥∥∥∥∥∥∥∥∥b
c

∥∥∥∥ ≤ tol

In addition to the tolerance, the user gives a maximum number of iterations (100
by default).

These termination conditions are given as a requirement of the final project for
this class. Alternatively, [2] gives other termination conditions on page 226.

‖rb‖
1 + ‖b‖ = ‖Ax− b‖

1 + ‖b‖ ≤ tol

‖rc‖
1 + ‖c‖ =

∥∥∥ATλ+ s− c
∥∥∥

1 + ‖c‖ ≤ tol

∥∥∥cTx− bTλ
∥∥∥

1 + ‖cTx‖ ≤ tol

Note that in the book [2], the numerator of the last condition is
∥∥∥cTx− bTy

∥∥∥.
Since y is not defined anywhere in the book, we replaced it by λ in our formulation.

Experiment

In the following table we gathered the results we can get with our solver. For each
problem, we give the reference optimal value, the difference between our result
and the reference, the best tolerance, with which our solver can converge, the
number of iterations needed for this result and the time needed on a computer
equipped with an Intel Xeon W-2145.

Our MPC solver
Problem Optimal Difference Best tol Iterations Time (s)

lp_afiro -4.6475314286E+02 2.856041e-09 1e-14 8 0.09
lp_brandy 1.5185098965E+03 -9.095947e-08 1e-8 18 1.09
lp_adlittle 2.2549496316E+05 2.371002e-06 1e-13 25 0.24
lp_agg -3.5991767287E+07 -4.703382e+02 1e-7 33 31.2
lp_stocfor1 -4.1131976219E+04 -4.364992e-07 1e-12 15 0.34
lp_fit1d -9.1463780924E+03 2.562531e-03 1e-5 17 773
lp_25fv47 5.5018458883E+03 2.865670e+00 1e-4 23 139
lp_ganges -1.0958636356E+05 -1.427071e-01 1e-6 12 1563
lpi_chemcom Infeasible N/A N/A N/A N/A

Discussion / Future work

In summary, we used the PD-framework and tried the three forms of step func-
tions. After explorating the two first options, we focused on the third form and
implemented a Cholesky factorization to take advantage of the symmetric semi-
definite matrix in it. To deal with illness or small pivot values of the symmetric

9

semi-definite matrix, we tried the "skip" or "replace it" heuristics. We implemented
the Mehrotra predictor-corrector method to pick a better step direction and used
a heuristic to pick the value of alpha during the line search step.

The main problem we faced happens when the residual and µ are both very small.
Sometimes, with big matrices, some instability arise when near to the solution.
For instance: lp_ganges, lp_fit1d and lp_25fv47, when tolerance is very small,
e.g. smaller than 10−5. Optimization process will become unstable, and then
simply diverge. At first, when testing the first form of the step equation, we
had a stricter alpha picking process, although it was usually yielding a too small
values and was often stuck in infinite loops, we did not encounter divergence
problems. To overcome that, we tried to tweak the parameters, pick different
tolerances, switch from one method to another method during the optimization
process randomly, etc. But it does not help us to get more robustness.

There are some improvements we did not have time to implement although they
are very promising. One such work is to deal with sparse matrices in our Cholesky
factorization code. The book [2] give some ways to deal with it, like columns
permutations using some heuristics. There also exists some heuristics to find more
robust step directions. But due to lack of time, we did not explore those.

About the first form and especially the second form of the step equation, the
book explain that some implementations use specific (more robust and faster)
factorization methods to solve the step equation. We did not have enough time
to explore any of them either.

Conclusion

It was a fun project. We learned a lot both on practical and theoretical part of
Linear Programming and gained much experience in developing an Interior-point
solver.

References

[1] Sanjay Mehrotra. “On the implementation of a primal-dual interior point
method”. In: SIAM Journal on optimization 2.4 (1992), pp. 575–601.

[2] Stephen J Wright. Primal-dual interior-point methods. Vol. 54. Siam, 1997.

10

	Abstract
	Problem
	Method
	Implementation details
	Presolving
	Conversion to standard form
	Starting point
	Step equation
	First form
	Second form
	Normal equations form
	Cholesky factorization

	Pick alpha
	Predictor-corrector method
	End condition

	Experiment
	Discussion / Future work
	Conclusion

