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Figure 1: Pipeline of ADPM: The initial procedural model designed by a technical artist (a). The end user edits the model by shrinking the
top right cushion (b-c). ADPM solves the inverse problem and propagates the modifications of the cushion back to the input parameters of
the procedural model (d).

Abstract
Procedural modeling allows for an automatic generation of large amounts of similar assets, but there is limited control over
the generated output. We address this problem by introducing Automatic Differentiable Procedural Modeling (ADPM). The for-
ward procedural model generates a final editable model. The user modifies the output interactively, and the modifications are
transferred back to the procedural model as its parameters by solving an inverse procedural modeling problem. We present an
auto-differentiable representation of the procedural model that significantly accelerates optimization. In ADPM the procedural
model is always available, all changes are non-destructive, and the user can interactively model the 3D object while keeping the
procedural representation. ADPM provides the user with precise control over the resulting model comparable to non-procedural
interactive modeling. ADPM is node-based, and it generates hierarchical 3D scene geometry converted to a differentiable com-
putational graph. Our formulation focuses on the differentiability of high-level primitives and bounding volumes of components
of the procedural model rather than the detailed mesh geometry. Although this high-level formulation limits the expressiveness
of user edits, it allows for efficient derivative computation and enables interactivity. We designed a new optimizer to solve for
inverse procedural modeling. It can detect that an edit is under-determined and has degrees of freedom. Leveraging cheap
derivative evaluation, it can explore the region of optimality of edits and suggest various configurations, all of which achieve
the requested edit differently. We show our system’s efficiency on several examples, and we validate it by a user study.

CCS Concepts
• Computing methodologies → Shape modeling; Interactive simulation;

1. Introduction

Procedural modeling automatically generate virtual assets, such as
3D models, textures, or effects, with an algorithm [EMP∗03]. It al-
lows for an automatic generation of large amounts of similar assets
by varying the procedural model’s parameters, rules, and initial-
ization. Procedural models are often complex non-linear systems
with an intricate cascade of feedback loops that can quickly am-
plify small changes in parameters over a few iterations.

One major problem with procedural modeling is controllability.
In fact, procedural generation is usually a one-way process and the

final model, e.g., a 3D scene composed of a hierarchy of meshes,
loses all parametric information. Consequently, any edit on a proce-
dural model must occur in the parametric space as opposed to the
3D space. Yet, users are most comfortable expressing their intent
in 3D space. This discrepancy makes the controlled generation of
variations difficult.

We address the controllability problem of Procedural Model-
ing by introducing Automatic Differentiable Procedural Model-
ing (ADPM). ADPM is a node-based procedural modeling engine
that generates hierarchical 3D scene geometry and has an intuitive
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GUI. The key feature of ADPM is that it can translate the gen-
erated model’s modifications in 3D space back to the parametric
space, and thus couples interactive editing with procedural model-
ing. There is no need for the technical artist to spend extra time to
rig the procedural model like it is traditionally done in animation.
The typical workflow that we target is when a technical artist first
designs the procedural model. Later the end-user can customize the
resulting procedural model without knowing its underlying repre-
sentation. With ADPM, the procedural model is always available,
all modifications are non-destructive, and the user can use a proce-
dural model comparable to non-procedural interactive modeling.

For the user, editing the model directly in 3D space is the most
convenient, but it comes with a disadvantage; edits can be ambigu-
ous as multiple changes in parameter space may match the edit in
3D space. Because it is unreasonable to ask the user to specify all
possible degrees of freedom when editing the model. Our optimizer
detects when an edit is under-determined, explores the region of op-
timality, and gathers several solutions. These optimal solutions are
ranked, shown to the user, and several solutions are highlighted,
e.g., the closest solution to the initial configuration, or the solution
that best keeps the model’s proportions. A user study justifies this
strategy.

Our work is inspired by recent work on the differentiability of
rendering [KBM∗20], physics systems [dABPSA∗18, HKUT20],
and inverse control of parametric shapes [MB21, CSQ∗22]. We
build a proxy differentiable representation of the procedural model
that allows for efficient computation of the derivatives of the out-
put with respect to the model’s parameters. This concept can be
implemented on top of any node-based procedural engine, as long
as nodes’ operations are differentiable and all input parameters are
continuous. To make the problem tractable and implementation
practical, we focus on the differentiability of higher-level primi-
tives and their bounding volumes instead of the detailed mesh ge-
ometry. This allows us to efficiently compute derivatives of affine
transformations of all of the primitives that compose the generated
model. We show our system on various examples, such as models
of furniture, insects, or robots. Figure 1 shows an example editing
workflow enabled by our system. Note that these edits are inter-
active and affect the underlying procedural representation of the
model.

We claim the following contributions: (1) WYSIWYG (What
You See Is What You Get) interactive editing of models aimed at
non-expert users in the context of a node-based procedural engine.
(2) A new optimizer for inverse procedural modeling that detects
the under-determined nature of a problem and finds various opti-
mal configurations within a budget of time.

2. Related Work

Procedural Modeling and Representations: Early PM methods
include L-systems [Lin68] that are a parallel string rewriting sys-
tem used to simulate vegetation [AK84]. Fractals [Man82] were
used to generate terrains [FFC82], and we refer the reader to a re-
cent review of the state of the art by Galin et al. [GGP∗19]. Shape
grammars [SG71] were used for generating man-made structures,
such as facades [WWSR03] and buildings [MWH∗06]. Various

works attempt to improve the control over the procedural gener-
ation such as [PJM94, BŠMM11, LBZ∗10]. Most of these algo-
rithms attempt to add some guidance based on the environment that
guides the forward modeling. Finally, some of the grammars were
extended and specialized in handling more complex models, such
as the CGA++ for architecture [SM15], the method of Krecklau
and Kobbelt [KK11] for interconnected structures or the method
from Santoni and Pellacini [SP16] for 2D patterns. We refer the
reader to a survey by Smelik et al. [STBB14] for a further overview
of procedural modeling. The direct procedural models do not pro-
vide editing capabilities beyond running the procedural generation
from scratch.

The grammar representation, be it for bottom-up growth like L-
systems, or top-down like split grammars, is powerful but difficult
to understand for novice users. While there is research on grammar
manipulation tools, such as a visual grammar editor [LBZ∗10], a
common representation and user interface of procedural systems is
the node graph. Node graphs model the data flow [JHM04], usu-
ally of 3D geometry, and operations, such as repetition or transfor-
mation, are performed on the data. Early use in procedural mod-
eling includes methods for modeling architecture and urban envi-
ronments [Pat10, SMBC13, SEBC15]. Currently, node graphs are
used in many popular 3D modeling and texturing packages, such
as Houdini [Sid21], Substance [Ado21], and Grasshopper [MA21].
While the visual programming aspect of node graphs reduces en-
try barriers, it does not fully address or solve procedural modeling
complexity and control issues. Our system extends the node graph
systems, but it does not require the end-user to know about it, as all
the model editing happens in the viewport.

Inverse Procedural Modeling (IPM) aims to translate existing ge-
ometry to a procedural representation. This is useful for generating
variations of a given non-procedural model but also as a way to
control the procedural generation.

Št’ava et al. [ŠBM∗10] inferred L-system grammar parameters
from vector data and Bokeloh et al. [BWS10] automatically finds
the grammar building blocks by analyzing partial symmetries. Tal-
ton et al. [TLL∗11, TYK∗12] used Monte Carlo Markov Chain
(MCMC) method to find grammar expansion to minimize multi-
ple objectives and later used it for finding a more general gram-
mar. Št’ava et al. [SPK∗14] used MCMC to estimate and optimize
parameters of a tree procedural model. Ritchie et al. [RMGH15]
improved on Talton’s approach by using Sequential Monte Carlo
(SMC). Statistical analysis of example scenes to synthesize virtual
worlds via a brush interface interactively was used by Emilien et
al. [EVC∗15], and IPM was applied to urban modeling by Vane-
gas et al. [VAB10, VGDA∗12]. Genetic algorithms were applied to
control procedural generation by Haubenwallner et al. [HSS17] and
Krs et al. [KMG∗20] used a genetic algorithm to evolve a procedu-
ral node graph.

Recently, neural-based approaches have been used in IPM.
Ritchie et al. [RTHG16] trained a neural network to act as an im-
portance sampler for an SMC inference algorithm, amortizing the
optimization cost. Kalojanov et al. [KLMK19] represent shapes
as strings, leveraging machine learning language processing tech-
niques to manipulate the shapes indirectly. Methods have been de-
veloped that infer grammars or short shape-generating programs
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Figure 2: ADPM overview: The input is a procedural graph that defines a parameterized Node-Based Procedural Model. When executed, it
generates a 3D scene and a proxy autodiff representation of the scene. The user modifies the 3D scene directly in the viewport and changes
are picked up by the solver, which optimizes the procedural model parameters to match edits. The optimization is accelerated by the proxy
autodiff representation. Finally, the Node-Based Procedural Model’s input parameters are updated by the solver to reflect the user’s edits.

from images. The method of Sharma et al. [SGL∗18] learns to
predict Constructive Solid Geometry (CSG) programs from an im-
age using reinforcement learning with image difference loss. Du
et al. [DIP∗18] presented a method to convert a 3D model to a
CSG tree. Ellis et al. [ERSLT18] showed program inference from
hand-drawn images of 2D shapes, Tian et al. [TLS∗19] from 3D
shapes and Liu and Wu [LW19] from images of simple 3D scenes.
L-system grammar from a 2D image of branching structures has
been inferred by Guo et al. [GJB∗20], and both Hu et al. [HDR19]
and Guo et al. [GHYZ20] use learning methods to infer parame-
ters of procedural materials. Jones et al. [JBX∗20] learn to gener-
ate programs written in a domain-specific language that generate
3D shapes. Liu et al. [LVW∗15] generate variations of an exist-
ing model by splitting it, and reassembling its parts into a plausible
model. Mathur et al. [MPZ20] provide a way to translate edits made
in the viewport back to the CAD parametric program that generated
the displayed 3D model. More generally, Mayer et al. [MKC18]
presented a bidirectional programming language that can update
the program to account for edits made on its output.

The inference of the procedural parameters can aid the cre-
ation and editing of the procedural model. An early work of Ijiri
et al. [IOI06] used sketching to control the growth of L-systems.
Longay et al. [LRBP12] later used space colonization [PHL∗09]
to grow a procedural model based on user input. Smelik et
al. [STdKB11] applied sketch to the generation of virtual worlds,
including terrain and roads. More recently, Huang et al. [HKYM16]
used deep learning to predict procedural models from sketches and
Nishida et al. [NGDA∗16] presented a similar system for sketch-
ing buildings. While these methods allow for some control of the
procedural generation, the edits are still indirect. In contrast, Lipp
et al. [LSL∗19] showed a method that can automatically generate
handles for "good edit locations", enabling direct local editing of
architectural, procedural models. Our method is similar in that it
allows direct local edits. However, we focus on general 3D geome-
try generated by node graphs.

Auto differentiation: (autodiff) efficiently computes derivatives of
a function defined by a program [Spe80, G∗89]. Autodiff gained
popularity in various applications. In particular, it has been used
to accelerate backpropagation in deep learning frameworks such as

PyTorch [PGC∗17] and Tensorflow [AAB∗16]. Autodiff has also
been recently applied to rendering for computing per-pixel gradi-
ents with respect to input parameters like shapes, materials, and
lighting. Loper and Black [LB14] and Kato et al. [KUH18] pre-
sented differentiable renderers with simple materials and shading.
Li et al. [LADL18] implemented a Monte Carlo differentiable path
tracer and Laine et al. [LHK∗20] presented high performance ras-
terization based differentiable renderer. For the latest overview, see
the differentiable rendering survey by Kato et al. [KBM∗20].

Currently, there is a growing interest in auto differen-
tiating physics simulation. Both de Avila Belbute-Peres et
al. [dABPSA∗18], and Degrave et al. [DHD∗19] built differen-
tiable physics engines on top of existing deep learning frameworks,
Liang et al. [LLK19] presented a differentiable cloth simulation,
and Schenck and Fox [SF18] showed a differentiable fluid dynam-
ics simulation. A specialized differentiable language for physical
simulations has been developed by Hu et al. [HAL∗19]. Other re-
cent autodiff tools include Kornia [RMP∗20] for computer vision
and for graph and geometry procesing [FL19] .

Gleicher [Gle94] introduced an early method for controlling 3D
objects interactively. His system expresses the manipulations as dif-
ferential equations, solved using a technique similar to auto dif-
ferentiation. A work close to ours has been recently presented by
Michel and Boubekeur [MB21]. Their method allows for interac-
tive direct manipulation of a parametric shape defined by a proce-
dural graph. They use a brush metaphor for editing and propose a
new way of handling under-determined edits based on the brush
radius, whereas our work uses 3D gizmos for interaction and pro-
poses multiple configurations if the edit is under-determined. An-
other difference is the level of edits; their edits can be more lo-
cal: at the vertex-level, whereas our system can only backpropa-
gate edits at the object-level, which means that the shape of in-
dividual components of the model cannot be interactively edited.
This is the tradeoff that comes with our formulation that focuses
on differentiability of higher-level primitives. However, one ma-
jor limitation of their approach is that they use finite-differences,
which is slower and can cause numerical problems, whereas we
use auto-differentiation. Cascaval et al. [CSQ∗22] present another
method close to ours. Their differentiable procedural model is ex-
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pressed as a CAD program, which is conceptually equivalent to
our graph-based representation. However, they offer editing at a
vertex granularity, which has better expressiveness, at the expense
of optimization speed. To deal with ambiguous edits, they imple-
ment a few local-optimization heuristics that minimize the same
objective function, but with different regularization terms. Shi et
al. [SLH∗20] presented a differentiable version of a procedural ma-
terial graph, which allows them to optimize and match a photo of
existing material. Our method extends this concept to a general pro-
cedural node graph generating 3D geometry and combines it with
interactive manipulation.

3. Overview

Figure 2 shows an overview of ADPM. At its core is a parameter-
ized Node-Based Procedural Model defined by a procedural graph
and its associated parameters. Nodes in the procedural graph take
data as input, execute operations, and output new data. Data travers-
ing edges of the procedural graph can be 3D objects or variables
of any type. A special input node allows parametrizing the Node-
Based Procedural Model (see Section 4). The nodes in the proce-
dural graph are connected and generate a 3D scene when executed.

The key contribution of our work is the procedural optimiza-
tion. We augment the 3D scene tree with automatically differen-
tiable parts, which leads to an Automatically Differentiable Node-
Based Procedural Model (ADPM). The ADPM executes its nodes
and generates a 3D scene. The generated geometry is an instance
of a 3D procedural model that the user can easily edit (translate,
rotate, or scale parts, change some elements, etc.). These changes
are processed by a solver that optimizes the procedural model and
modifies the input parameters of the ADPM to match the edits.

4. Procedural system

Input parameters

Leg height:    0.6 m

Seat width:    0.5 m

Seat depth:    0.5 m

Generate Seat

Generate Legs

Assemble Stool

Display nodeStarting node

Sockets for an object 𝑜𝑜Scalar value sockets

Figure 3: Node-based Procedural Model: Nodes represent high-
level operations. The "input parameters" node defines the size of
parts of the output model, the "generate seat" and the "generate
legs" nodes create the geometry of different parts of the model. The
"assemble stool" node connects parts to form the stool. Note that
there may be multiple input nodes, but only one active display node.
See Figure 17 for the actual graph implemented in our system.

ADPM is a directed acyclic multi-graph G = (V,E) composed
of nodes vi ∈ V and edges ei ∈ E . Each node vi has an input set
of parameters x ∈ Rn and data D, that is most often a 3D geo-
metric object. The node transforms D (e.g., applies a geometric

transformation on a 3D object) and outputs the transformed ver-
sion vi(x,D). We call this operation a node execution or production.
The entire ADPM is executed by executing all its nodes V in topo-
logical order. Note that since the graph in ADPM is acyclic, each
node is executed only once per execution of the ADPM.

The procedural graph G can be thought of as a function that takes
an n-dimensional vector x ∈Rn as input and outputs a 3D scene S:

S = G(x) with x ∈Rn. (1)

An example in Figure 3 generates a stool of varying size. As with
any procedural model, the user can modify the generated model
by changing the input parameters, and the 3D geometry is conse-
quently updated. ADPM also allows the inverse operation, that is,
to automatically propagate any modification of the generated model
back to the input parameters.

Inputs and outputs of nodes V are symbolized by sockets con-
nected via graph edges. Nodes can have any number of input and
output sockets that send and receive different types of data. Input
sockets can be connected to only one edge, whereas output sockets
can be connected to many edges. An edge can connect only sockets
of the same type. Data flowing through edges E can be of any type,
including scalars, vectors, and 3D objects.

There are two special types of nodes (see Figure 3): the end node,
which is also called the display node, and the starting nodes. Start-
ing nodes do not have input sockets and are not dependent on any
other nodes; they are typically input variables nodes. The end node
does not have any dependent nodes, and generates the output 3D
scene geometry, which can be displayed. The ADPM production
ends when the display node is executed.

5. Differentiable representation

The current node-based procedural models (e.g., [Sid21, Ado21,
MA21]) allow only for forward procedural generation, i.e., know-
ing G and the input x, it generates the 3D model S = G(x), be-
cause the inverse operation x=G−1(S) is not generally known. We
model the inverse operation as a data fitting problem. We cast it as
an optimization problem and solve it by using gradient-based opti-
mization. The setup of a differentiable computational graph model
is motivated by the ability of auto differentiation to accelerate opti-
mization.

5.1. Automatic Differentiation (autodiff)

Autodiff is an efficient and numerically stable method for comput-
ing the gradient of a function [G∗89]. It creates an expression graph
of computation for the evaluated function, and it keeps track of
arithmetic operations (addition, multiplication, etc.) while the func-
tion’s output value is computed. The algorithm applies the chain
rule recursively on the expression graph to obtain partial deriva-
tive values. There are two main ways to apply the chain rule. In
forward mode, derivatives are propagated in the expression graph
starting from the input variables towards the function result. In
reverse mode, derivatives are backpropagated in the expression
graph, starting from the result towards the input variables.
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We use reverse autodiff mode [Lin76] that has a major advan-
tages for our use case. It is efficient for evaluating partial derivatives
of functions f :Rn 7→ R with n >> 1, which are common during
gradient-based optimization of a single-valued objective function.
An alternative to reverse autodiff would be to directly compute ana-
lytical differences using the procedural graph G, although it is con-
ceptually equivalent, it would have to be implemented from scratch.
Using an existing auto-differentiation library makes our approach
more accessible and general.

Converting a procedural graph to a differentiable computational
graph allows modifications made in the final model S to be ef-
ficiently backpropagated to the input parameters x (Section 6). A
straightforward way to make the procedural graph differentiable
would be to convert all generated mesh vertices into an auto-
differentiable type. However, this would make the problem slow
for interactive editing. The gradient estimation complexity would
depend on the number of vertices in the scene, which is often high.
Instead, we work with the hierarchy of bounding boxes (proxies)
of objects in the scene S. Our framework tracks affine transforma-
tions of the objects generated by the procedural graph G making the
objective function simpler to optimize because it uses fewer terms.

5.2. Automatic Differentiable Node-Based Procedural Model

In parallel to the 3D scene, ADPM maintains a differentiable repre-
sentation of the scene tree. To each object in the scene tree is asso-
ciated 1) an auto-differentiable local transformation matrix that is
expressed in the object’s parent frame of reference, and translated,
rotated, or scaled as the objects undergo transformations, and 2) an
auto-differentiable oriented bounding box (OBB). The OBBs are
generated as axis-aligned, but they get modified when objects go
through the apply transform node. Matrices and OBBs in the dif-
ferentiable representation are organized hierarchically to mirror the
hierarchy of the scene tree.

When the procedural graph generates an object oi, ADPM as-
signs it a default auto-differentiable local transformation identity
matrix Mi = I4 and a default axis-aligned OBB Bi. The OBB Bi
is represented by its center, three vectors forming an orthogonal
frame, and its size along the three directions. The components of
Bi are expressed relative to the reference frame defined by the local
transformation matrix Mi, expressed in the local frame of reference
defined by the object’s oi parent in the scene tree. To get the po-
sition of the oriented bounding box Bi in the world coordinates,
one needs to compose the hierarchy of local transformation matri-
ces Mroot × ·· · ×Mparent ×Mi from the root of the scene tree to
the object oi and apply the final transform matrix on the OBB Bi.
Once the OBB Bi is expressed in the world coordinates, we get the
coordinates of its eight corners.

Our framework implements nodes that correspond to the small-
est set of operations needed to create our example procedural mod-
els, such as the one shown in Figure 1. The set of nodes is delib-
erately minimalist yet powerful. In fact, applying the basic nodes
successively is equivalent to applying a high-level operation. In that
spirit, to ease the creation process, we implemented a sub-graph
mechanism that allows the technical artist to combine several basic
nodes into a higher-level node that can be reused later. Any addi-
tional node could be implemented in a production-ready system as

long as its operation is differentiable. Section 10.1 of the appendix
is a list of auto-differentiable nodes implemented in ADPM.

6. Inverse Problem and Optimization

𝑑 = 2 × 4.72 + 4 × 3.82 + 2 × 2.7²

Figure 4: Objective function example: The objective function to
minimize is the sum of the squared distances between the eight cor-
ners of (left) the initial oriented bounding box and (right) the target
oriented bounding box.

6.1. Optimization Problem

The forward problem is denoted by x 7→ S = G(x), indicating that
the 3D scene S is generated by executing the procedural graph G
with the input parameters x. Let I ⊂Rn be the set of possible val-
ues of the input parameters x∈I and S the set of possible outcomes
of the procedural model S = {G(x)|∀x ∈ I}. Mathematically G is
called the forward operator [YRKC17].

The inverse problem consists in finding the parameter x ∈ I that
gives a certain S ∈ S without knowing the inverse application x =
G−1(S). The inverse problem can be ill-posed because the forward
operator G can be non-injective (i.e., two or more different input
parameters generate the same scene). It is also possible that one
tries to find input parameters for a target 3D scene Ŝ that is not part
of S. In this case a desirable outcome of the inverse problem would
be an input parameter x ∈ I that gives an orthogonal projection of
Ŝ on S. We express the inverse problem as an optimization problem
that aims to find the input parameters x∈I that best fit the expected
outcome Ŝ. We introduce an objective function (i.e., a cost function)
ΨG : (I×S) 7→R+ (see Section 6.2) that measures how well input
parameters x fit a 3D scene Ŝ. We attempt to minimize ΨG

min
x∈I

ΨG(x, Ŝ). (2)

To build the target configuration Ŝ that is the input to the inverse
problem, ADPM watches the interactive 3D modifications made
by the user. When the procedural graph G is executed with initial
parameters x0, the initial configurations G(x0) of all OBBs in the
scene are retained as a reference. While the user is editing the 3D
scene, ADPM tracks changes made to the OBBs. With each change,
the positions of OBBs in the viewport are compared to the refer-
ence to the initial configuration. Any OBB that the user modified is
added to the target configuration Ŝ so that the optimization target is
a map of new positions of OBBs with their identifiers. Note that if
an OBB was not edited, it is not part of the target Ŝ and can freely
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move during optimization. When solving the inverse problem, the
optimizer only tries to match the edits made by the user. Therefore,
if something has to stay in place, the user must manually annotate
it by adding the fixed OBB to Ŝ.

6.2. Objective Function ΨG

The objective function ΨG is defined so that:

ΨG(x, Ŝ) = 0 ⇐⇒ G(x) = Ŝ. (3)

That implies if one finds a global minimum of ΨG , the inverse prob-
lem is solved, the intent of the user is fulfilled, and the model is
visually similar to what the user had in mind.

The objective function ΨG is defined as the sum of squared dis-
tances between corners of target OBBs in Ŝ and the corresponding
OBBs generated by G(x) (see Figure 4)

ΨG(x, Ŝ) = ∑
si∈Ŝ

d(si,Gi(x)), (4)

where d(si,s j) is the squared distance between the OBBs si and s j.

It has been shown in the context of 6D pose estimation [LWJ∗18]
that the optimization can be simplified by matching corners of
OBBs instead of matching their centers, Euler angles, and extents.
Directly matching Euler angles may cause ambiguities because of
the gimbal lock.

Note that while editing, the user moves parts of the ADPM,
which may end up disconnected (see Figure 8 left). However, this
is fixed automatically by the solver as it maintains the procedural
model’s internal consistency (Figure 8 right). Hence, even if the
target configuration is unreachable (i.e.,Ŝ /∈ S) or if the solver fails
to reach the global minimum, the output is still a plausible model
that is also as similar as possible to the target.

6.3. Optimizer

The input to our optimizer consists of 1) the objective function ΨG ,
2) the initial parameters x0, and 3) a maximum budget of evalu-
ations of the objective function. Our novel optimizer for inverse
procedural modeling works in two phases. First, it uses local op-
timization to reach the nearest optimal region. If the problem is
under-determined, it uses the remaining budget to explore the op-
timality region. Otherwise, it runs the global optimization until the
budget is used up.

We adapted the Basin-hopping method [WD97], which is a two-
phase method that combines global stepping and local minimiza-
tion. As such, the actual method used for local minimization is not
critical, and different methods work depending on the properties of
the problem. We detail the algorithms we use for local and global
optimization below.

6.4. Local Optimization

We optimize a continuous and single-valued objective function
that can be non-linear. Our differentiable representation allows for
cheap evaluation of ΨG and its gradient. The Hessian matrix is
available but can be expensive to compute relatively to the gradient

(it hasO(n2) complexity). The set of parameters is small (10-100),
and there are no constraints apart from the fact that parameters can
be bounded.

We use quasi-Newton methods for the local optimization, which
only evaluate the objective function and its gradient. Depending
on whether the problem was unbounded or bounded, we used
BFGS [NW06] or L-BFGS-B [BLNZ95] respectively. We could
also use a trust-region method [CGT00], but depending on the im-
plementation, it can be slower than quasi-Newton methods because
the Hessian matrix can be prohibitively more expensive to compute
than the gradient.

6.5. Check if Problem is Under-determined

To check if the problem is under-determined, we model the ob-
jective function using its second-order Taylor series expansion ap-
proximation and look for directions in which the function is con-
stant. The local optimization phase finds an optimal point. Per defi-
nition of the second-order necessary condition for optimality, we
know that the gradient is zero and the Hessian matrix is semi-
definite positive at a locally optimal point. Since the gradient is
zero, the second-order Taylor series expansion defines a quadratic
form, whose principal axes are the eigenvectors of the Hessian ma-
trix. The Hessian matrix is symmetric. Therefore, its eigenvalues
are real-valued. If some of the eigenvalues are close to zero (be-
low a defined threshold), we consider that the solution is under-
determined. It may be possible to find other optimal solutions in the
direction of the eigenvector associated with near-zero eigenvalue.

If the Hessian matrix is unavailable or expensive to compute, it
is still possible to use its approximation. Since BFGS maintains
an approximation of the inverse of the Hessian matrix, it is possi-
ble to use its pseudo-inverse to determine if the problem is under-
determined and in which direction we need to explore the optimal-
ity region.

6.6. Global Optimization

The objective function can become non-linear and non-convex with
multiple local minima e.g., for a complex model or if the user ed-
its are far from the initial configuration. A practical example is a
robotic arm when the user decides to move the end effector very far
from its current location. To account for the difficult inverse prob-
lems, we implemented a global optimization algorithm.

The global optimization uses the Basin-hopping method [WD97]
and adapts it to work with bounded objective functions. Basin-
hopping is a two-phase approach that combines global random
steps with local minimization. Global steps are accepted or dis-
carded using a temperature parameter, similar to simulated anneal-
ing [KGV83]. We adjust the Basin-hopping method by changing
the way global steps are taken. We normalize the length of steps
according to the range of parameters and make sure steps that are
out of bounds are discarded.

This solution is suitable for our tasks because the minimized ob-
jective functions are mostly continuous and smooth, as we only
track affine transformations, and minimize the squared difference
to the target configuration.
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6.7. Exploring the Optimality Region

A regularization term is usually used during optimization to ad-
dress the problem of multiple solutions when solving the inverse
problem with a non-injective forward operator (i.e., an under-
determined edit), but this strategy privileges one solution over oth-
ers [Gle94, MB21]. Instead, we explore the optimality region and
present the user with various configurations to choose from. This
is made possible by the differentiable representation, which signif-
icantly improves the speed of optimization.

We adjust the Basin-hopping algorithm to allow for the optimal-
ity region exploration. The step size is decreased to favor random
steps that stay close to the optimality region. The temperature is
decreased so that there is a low probability of accepting a jump
to a less optimal region. Finally, we bias the global random steps
to be more likely to go in the direction of the optimality region.
When taking a global random step from an optimal point, we find
the eigenvectors of the Hessian matrix and fine-tune the step size
in the direction of eigenvectors. An eigenvector associated with a
small eigenvalue will be assigned a bigger step size than an eigen-
vector associated with a bigger eigenvalue (see Section 7 for values
of hyper-parameters).

The adjustments made to the Basin-hopping method ensure that
the algorithm is more likely to stay close to the optimality region
and minimize the number of local optimization steps needed to
return to the optimality region if we randomly jump too far from
it. The adjusted parameters have an impact on the speed of explo-
ration. Thus, a bad set of parameters will not make the algorithm
fail. Simply, all things equal, the set of optimal configurations will
be less diverse with non-optimal parameters because the algorithm
will not have time to reach as many interesting configurations in
the budgeted time.

Exploring the optimality region can be viewed as a random walk,
and there is a chance that the algorithm will come back to its
starting point. However, the probability of coming to the starting
point quickly decreases for higher dimensions, so our algorithm
will most likely find more diverse solutions [Pól21].

6.8. Grouping and Ordering Solutions

After the global or exploration phases are completed, the opti-
mizer’s output is either a unique optimal solution or several solu-
tions. If multiple solutions are found, we group and order solutions
for the user to review them quickly.

First, we use a kd-Tree to remove duplicate optimal points. Then
we go through the list of all optimal points and find a set of recom-
mendations for the user to look at in priority. Following is the list of
particular solutions that we present to the user. See Figure 14 in the
appendix for images corresponding to the recommended solutions.

The nearest solution (L2 norm) to the starting point x0. This is
the solution that has the overall least amount of change in param-
eters. Note that even though it can be a good approximation, this
solution is not the one with the least change in 3D shape. Finding
the solution that minimizes the Chamfer distance [FSG17] would
be prohibitively expensive as it would require to generate the 3D
shape for all optimal points.

The farthest solution (L2 norm) from the starting point x0. This is
the solution that has the largest amount of change in parameters. It
probably looks very different from x0, yet still satisfies the edit.

The solution with the most delta-like change: a constant amount
is added to all coordinates of x0. A geometrical interpretation of
this solution is the optimal point closest to a line p(t) = x0 +
t(1,1, . . . ,1),∀t, i.e., starting from x0 and going in the direction of
the all-ones vector.

The solution with the most proportional change: a constant mul-
tiplication factor is applied to all parameters. A geometrical in-
terpretation of this solution is the optimal point closest to a line
p(t) = t · x0∀t, i.e., passing through the origin and x0.

The solution with the least amount of change over one parame-
ter keeps one variable of the problem constant and satisfies the edit
only using other parameters.

Once we find a set of recommended configurations, we go over
all optimal points and group them into independent optimality
regions. This step is important in the case that the global opti-
mization finds more than one optimality region (see Figure 12 in
the appendix). To find groups of optimal points, we use the DB-
SCAN [EKS∗96] clustering, with an epsilon set to a multiple of
the step size used during global optimization. Once optimal points
are grouped, we find an order to present them to the user. This step
is important because the random walk over the optimality region
does not guarantee that optimal points are ordered in a semanti-
cally meaningful way. We chose to use a heuristic solution to this
problem to maximize the response time of our interactive system
at the expense of raw precision. For each group of optimal points,
we run an approximate k-medoid clustering [Mar64,PJ09] and find
eight representative points. These are representative points that are
uniformly spread among all optimal points.

We then find the shortest Hamiltonian path from the eight repre-
sentative points, which gives us the shortest path going through the
eight points without a cycle. To order all optimal points, we project
them on the line segment formed by the shortest Hamiltonian path
and sort them according to their parametric coordinate (See Fig-
ure 18). This ordering has more semantic meaning than a random
order since it takes a path from one point in the optimality region to
another point. See Figure 14 and Figure 15 in the appendix for an
example of ordering. Experimentally, this strategy works particu-
larly well when the optimality region is a 1D subspace. In this case,
the order will follow the manifold defined by the optimality region.
Suppose the optimality region is a subspace of higher dimensions.
In that case, our heuristic will not disentangle the dimensions, but
it will still most likely follow the dimension that has the longest
extended and pack the other dimensions in-between.

6.9. Discontinuous Parameters

Not all models are generated by a fully differentiable procedural
graph. An example is when non-differentiable nodes are used or
when a legacy graph is not upgraded to differentiable nodes. As
a fallback, our system implements a derivative-free optimizer if at
least one of the target OBB is not auto differentiable. In this case,
the system is still functional, but it is considerably slower and thus
not interactive.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Mathieu Gaillard et al. / Automatic Differentiable Procedural Modeling

7. Implementation

We implemented ADPM in Python as an add-on to Blender® ver-
sion 2.93 LTS. Results were generated on a laptop with an Intel
Core i7-10875H (8 cores @ 2.30 GHz, turbo up to 5.1 GHz), 32 GB
RAM with an Nvidia RTX 2060 Max-Q. The Blender® Cycles en-
gine was used to render the images. Our code and example graphs
are hosted on GitHub: https://github.com/mgaillard/
Sorcar

The implementation of our inverse modeling feature is based on
the existing procedural modeling add-on Sorcar [Aac21] that uses
the node system to call Blender’s API and generate the procedural
models. Sorcar provides only the forward procedural model gen-
eration, and we extended Blender’s scene tree and its objects with
differentiable transformation matrices and OBBs (Section 5). Sor-
car still keeps its full features and functionality, in addition to the
inverse modeling capability for editing.

Sorcar originally features hundreds of different nodes for proce-
dural modeling. Besides, high-level nodes were added, which com-
bine many operations that make modeling faster (see Section 5).
We also added our input variable nodes that allow the optimizer
to interact with parameters in the procedural graph G. We imple-
mented dedicated input variable nodes because it makes it simpler
for the optimizer to list all individual input parameters xi ∈ I of
the procedural graph G. Input variable nodes also let the user add
box constraints on the parameters during optimization. By default,
individual parameters are unconstrained xi ∈ R, but they can also
be bounded min ≤ xi ≤ max. It is possible to set an input variable
as constant to freeze parts of the model when editing.

We use the optimization package from SciPy [VGO∗20] to solve
the inverse problem. We customized their Basin-hopping imple-
mentation by replacing routines for taking random global steps, ac-
cepting steps, and local minimization. Different methods are used
for local optimization, depending on the characteristics of the in-
verse problem to solve. When all variables are unbounded, we use
BFGS [NW06]. If at least one input parameter is bounded, we use
L-BFGS-B [BLNZ95]. If parts of the model are not augmented
with auto differentiation, we use the derivative-free optimization
method Nelder-mead [NM65] for unbounded problems, and a mod-
ified version of Powell [Pow64, PTVF07] for bounded problems.
For Basin-hopping, the temperature is set to 1.0 for global opti-
mization and 0.1 for exploration. The step size is set to 0.25 for
global optimization and 0.05 for exploration. These values are ex-
pressed in terms of the percentage of the range for each parame-
ter. In other words, a value of 0.05 means 5% of the total range in
each direction. When exploring with the Hessian activated, we dou-
ble the step size in the direction of the eigenvector associated with
the lowest eigen value. We did not fine-tune the hyper-parameters,
and mostly kept default values. The only adverse effect of choosing
sub-optimal values is that with equal budget of time, sampling of
the optimality region will tend to be less diverse. We use the follow-
ing values for grouping and ordering of parameters: the threshold
for deciding if two points are duplicates is 1e−2. For DBSCAN,
ε = 1.0, and the minimum number of points per cluster is one.

We used the CasADi [AGH∗19] auto differentiation library that
is a C++ backend for automatic differentiation, but it has a Python

frontend to interface with Blender®. Various auto differentiation li-
braries exist, but CasADi implements the possibility of building the
objective function once and then evaluating it multiple times with
different values. This allows ADPM to make the differentiable rep-
resentation only once when the procedural graph G is executed.
Then the objective function can be compiled just-in-time and op-
timized separately. Optimizing the function separately is efficient
because while solving the inverse problem, the optimizer can fo-
cus only on the necessary operations instead of also handling the
3D geometry. Thanks to this feature, the time required to optimize
any model presented in this paper was in the order of milliseconds
(see Table 1).

Building a differentiable procedural graph requires compara-
ble effort to traditional non-differentiable graphs. We prevent in-
valid configuration by correctly setting types of data that can go
through nodes via sockets and edges. The technical artist designing
the ADPM does not need to understand how the differentiable rep-
resentation works, and the end-user does not need to edit the pro-
cedural model. At any moment, the differentiable representation is
invisible to the user.

8. Results and Evaluation

8.1. Results

We show various examples created by a technical artist that demon-
strate the usability of our approach. The procedural graphs are fully
editable with ADPM. In all examples, except for materials, every-
thing is procedurally generated by ADPM.

Table 1 shows statistics and a performance breakdown for all
examples from this paper. The number of nodes of the procedural
graph ranges from 31 to 164, the number of links from 43 to 234,
and the number of editable parameters from one to 30. The gener-
ation time for the most complex scene in our examples (Figure 9)
is 553 ms on average. The time for generation and optimization of
the simple examples (Figure 7 and Figure 8) is under a second.

The procedural stool (Figure 6) shows the versatility of the edit-
ing capabilities of ADPM. It is composed of a wooden seat and four
metal legs. Its editable parameters include the seat size, thickness,
the length and radius of legs, and the distance between the top of
the legs and the side of the seat. The user can reconfigure the model
with a few mouse clicks, using a transformation gizmo common in
3D modeling software to manipulate individual parts of the model
(see Figure 1). The resulting model will adhere to constraints de-
fined by the procedural graph, for example, the leg thickness is pre-
served regardless of the size of the top. We extended the procedural
model of the stool to lay a Suzanne head from Blender®on top of it.
By raising the head, we trigger an under-determined edit because
the stool can be made taller by either adjusting the legs’ height, or
the seat thickness, or a combination of both. Figure 5 shows the
suggestions made by ADPM. This type of under-determined edit
is encountered when two variables equally contribute to the same
value. We show a detailed analysis of an abstraction of this example
with a stack of three cubes in Figure 13 of the appendix.

The sofa in Figure 7 is composed of a base wooden plank, four
metal legs, two armrests on each side, a wooden back, and four blue
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a) b) c) d) e) f) g)

Figure 5: Stool: a) A procedural stool with the Suzanne head from Blender®. b) The user edits the model by raising the Suzanne head. Image
of the c) nearest, d) farthest, e) most delta-like change, f) most proportional change, and g) constant legs’ height solution. These images were
used in the user study.

Input Output Optimization [ms]
Model # of nodes # of links # of params # of objects Scene depth Gen Local Under-determined Global / Exploration Clustering / Ordering
Three cubes (Figure 13) 27 30 2 3 1 51 2.0 1.3 410 310
Stool (Figure 3) 63 89 5 5-6 1 113 1.7 1.6 353 410
Sofa (Figure 7) 86 110 9 12 3 513 3.0 2.1 943 N/A
Robotic arm (Figure 10) 95 108 7 8 8 489 8.6 4.7 6,084 26.8
Succulent (Figure 11) 32 44 12 48 2 163 10.0 1.4 2,858 1,149
Centipede (Figure 9) 164 234 30 22 7 553 11.9 2.7 3,526 401

Table 1: Statistics for the generated models: Input includes the number of nodes and links that form the procedural graph. The column
number of parameters gives the number of input variables of each model. The output shows the complexity of the generated 3D scene:
number of objects and scene depth, which is the maximum number of parents an object can have in the scene. Optimization shows timings
decomposed into generation (i.e., time to build the model, the differentiable representation, and display it on the screen), local optimization
(see Section 6.4), identification of the under-determined nature of the edit (see Section 6.5), global optimization or exploration of the region
of optimality (see Section 6.6), clustering and ordering of points (see Section 6.8). The clustering and ordering column for the sofa model
is N/A because it has been designed to make it impossible to trigger an under-determined edit. Note that the budget for global optimiza-
tion/exploration was set to 400 local minimization steps. Hence it takes roughly 400 times longer than local optimization.

Figure 6: Stool: A procedural stool on the left can be replicated
and the scene can be arranged by a few editing operations so that
it becomes a table with two stools.

leather cushions. It is editable by several parameters that include:
the overall width and depth of the sofa, the thickness of all wooden
parts, the size of armrests, the size of cushions.

Some parts of the model are constrained by the same input pa-
rameters. For example, the two armrests must have the same size to
be symmetric. By re-using the same input parameters at different
locations in the procedural model and adding box constraints on
the input parameters, we constrain the set of possible models S to
include only visually pleasing models. This ensures that the model
will always keep its consistency, after the inverse problem is solved
(see Figure 8). Cushions were procedurally generated with a cloth
simulation that inflates the cushion meshes with internal springs. A
custom node triggers the cloth simulation as a post-processing step.
The edits were made using a transform gizmo, as shown in Figure 1
and the supplementary video.

Figure 9 shows a simplified centipede (hexipede) with three
pairs of legs. It consists of a head and three blocks, each composed

Figure 7: Sofa is parameterized to be symmetric. The two arm-
rests are parameterized by a single parameter to allow for larger
changes with a simple operation. See Figure 1 for an example of an
edit of the sofa.

of a body element and two legs. This example shows that ADPM
can have multiple procedural graphs interacting with each other. A
graph generates the terrain, and another graph generates the cen-
tipede. To ensure that the centipede is always touching the ground,
we designed a node to trigger the update and optimization of the
other graph automatically. Thus, after the generation of the terrain
and the centipede, the centipede is optimized with 1) the target for
its head that stays fixed, and 2) the target for each leg is set to touch
the ground and be oriented according to the terrain’s normal (see
the supplementary video).

This example has been designed to be an adversarial case for
optimization and demonstrates the speedup enabled by the differ-
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Figure 8: Sofa: The sofa from Figure 7 was edited by a careless
user and set as a target for optimization (left). The same sofa after
the optimization (right). Solving the inverse problem with even the
most adversarial edits will always yield a plausible model thanks to
bounded optimization and the fact that the procedural graph gen-
erates only valid models.

Figure 9: Centipede: scene includes two procedural models, one
for the terrain and one for the centipede. The head of the centipede
is fixed and its legs are automatically optimized to touch the terrain
(see the supplementary video).

entiable representation. The model consists of 30 different input
parameters (two DOF per body element, four DOF per leg). The
objective function is highly non-linear, as it includes rotations in the
joints that are bounded. For instance, the last leg segments depend
on a hierarchy of seven rotations. When the user edits a single leg,
solving the inverse problem takes 11.9 ms on average. When opti-
mizing all legs to touch the ground, the time increases to about 100-
200 ms (on average: 128 ms). An artist would need much longer to
manually change the parameters of the graph.

Another example of a procedural model created using ADPM is
the robotic arm shown in Figure 10. Each element is procedurally
generated from scratch using nodes implemented in ADPM. Ba-
sic elements are later duplicated and assembled to form the arm.
The robotic arm is automatically animated to point its end effec-
tor (a metal cone) at the nearest vertex on Suzanne’s head. It is
easy to add elements to the robotic arm by copying the nodes to
make it longer. This example shows that our system can be used to
solve inverse problems similar to inverse kinematics. Additionally,
the robotic arm has enough degrees of freedom to trigger under-
determined edits. Figure 12 from the appendix shows how global
optimization finds two different solutions. Figure 16 from the ap-
pendix shows different suggestions made by our system. See the
supplementary video for an animation of optimal points sampled
from the optimality region.

Figure 11 shows a succulent plant. The procedural graph repli-
cates and transforms a single leaf object to make a plant. Procedural
parameters include: number of layers, number of leaves per layer,

Figure 10: Robotic arm: Suzanne head from Blender®(left-hand
side) and a fully procedural robotic arm constrained to point at the
head (right-hand side).

Figure 11: Succulent: A plant generated using the Radius Scatter
node of our system.

initial radius, offset and phase of successive layers. See the video
for an interactive editing session of this procedural model.

Timing: The evaluation of a Blender procedural graph takes
20-600 ms (see Table 1). The time needed to evaluate a procedu-
ral graph depends on the complexity of the model. Increasing the
geometric complexity and object transformations requires longer
evaluation times. Graph-based procedural modeling is only used in
forward mode, that is why evaluation speed is usually not essen-
tial, because graphs are rarely re-executed. Sorcar, which we build
upon, is a traditional graph-based procedural engine, as such it is
not optimized for maximum execution speed, because it relies on
the internal Blender® API. If we were to implement a similar tool
as ADPM without auto-differentiation, evaluation speed would be
critical since solving the inverse problem requires thousands execu-
tions of the graph in a short period of time. Optimizing the internal
node engine of Blender®is an engineering challenge that we chose
not to tackle. Instead, we focused on the acceleration of optimiza-
tion by building a separate differentiable representation on top of
Sorcar. This way, we can solve the inverse problem separately from
Blender®with automatically computed gradient, which is order of
magnitude faster than finite differences (see Table 1 for optimiza-
tion times). With ADPM, since the model is updated after optimiza-
tion, the total time between the modification and the display of the
updated model is the time for optimization plus the time for execu-
tion. We implemented an interactive editing tool within Blender®.
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As soon as the user changes the model, our inverse procedural op-
timizer is triggered and parameters are modified to best match the
edit. See supplementary video for a recording of an editing session.

8.2. User Studies

Qualitative User study was conducted with five users. After a
short introduction to procedural modeling and the motivation be-
hind our approach, we let the users practice on a simple model (the
three cubes example). Users were first shown how to navigate, edit,
and change the procedural model. Then they were allowed to prac-
tice and ask questions to ensure that they understood the system.

After the introduction, they were tasked to perform sofa editing
from Figure 7. We placed an existing configuration as an overlay
image on the viewport with transparency. The users were asked to
edit the model to match it. After the study, the users were asked to
fill a survey asking a question about themselves and evaluate their
experience on a four point Likert scale (2 strongly agree, 1 some-
what agree, -1 somewhat disagree, -2 strongly disagree). The scale
does not include a neutral option thus forcing the users to lean either
towards positive or negative. The participants identified themselves
as experts in 3D modeling: 0.4 on average and experienced in pro-
cedural modeling: -0.2; In other words, they were, on average in-
experienced with procedural modeling. Overall user qualifications
regarding 3D modeling and procedural modeling were balanced,
with both expert and beginners profiles.

When asked if ADPM were easy to use, the user responded 0.8
on average. Regarding whether edits matched their expectations,
users answered 1.4 on average. When asked if it were easy to match
the target configuration, users replied 0.8 on average. One partici-
pant reported that it is very easy to get a result similar to the tar-
get quickly, but fine-tuning the parameters to exactly match the
target from a single projected view is difficult. Finally, we asked
users which way of editing they preferred (1) only manual editing
of parameters, 2) mostly manual + some automatic with ADPM,
3) mostly automatic with ADPM and some manual, 4) fully auto-
matic with ADPM). Three of them replied that their preferred op-
tion is 3) two answered 2). The user study shows that non-experts
users were able to quickly and effectively use an advanced proce-
dural model to achieve rather complex modeling tasks.

Quantitative User Study was conducted with 21 users. Users
were presented with a several procedural models (Stool, Cubes,
Robotic arm, and Succulent) along with an under-determined edit
made to them. Images of the various suggestions from our opti-
mizer were shown and users were asked which one they visually
preferred (See Figure 5 for examples of images used for this user
study). This study shows that in case the edit is under-determined,
users are interested in suggestions other than the default solution
(i.e., the solution found during the first local optimization phase).
Results are shown in Table 2 in the appendix. We ran a Chi-squared
statistical analysis to show that the distribution is not uniformly
random, thus users tend to have preferences for certain solutions.
Finally, we can see that users do not always pick the result of the
local optimization phase, which justifies that exploring the optimal-
ity region is interesting for users.

9. Conclusion, Limitations, and Future Work

We introduced ADPM, an auto differentiable procedural modeling
system for node-based procedural models. We construct a proxy
graph that operates on a simplified representation of generated
object-oriented bounding boxes (OBBs). We track all operations
performed on the OBBs during procedural generation and construct
a computational graph. The user is then free to manipulate the gen-
erated output model directly in the viewport. When the edit is done,
we define an objective function, whose minimization implies that
OBBs are located were moved by the user. This allows us to find
the parameters of the procedural model that match the user edit. If
the edit is under-determined and has degrees of freedom, our opti-
mizer detects it and makes various suggestions. The user performs
non-destructive interactive modifications of a procedural model in
a what you see is what you get workflow. The user does not need to
know procedural modeling yet can use it. We have shown ADPM
on several examples, and we performed a user study that found that
users could use the system effectively and preferred it over manu-
ally adjusting parameters. We also show that users are interested in
getting various suggestions for edits that are under-determined.

Our work has several limitations. The augmentation of a graph-
based procedural model is done manually, and it would be inter-
esting to implement an automatic conversion procedure. We limit
ourselves to a high-level primitive hierarchy and a finer vertex-level
granularity could be achieved by trading off speed and implemen-
tation complexity. An autodiff representation lends itself well to
integration into novel machine learning pipelines. It would be in-
teresting to explore ways to increase the granularity of edits and
support more geometric operations. Our system does not homoge-
nize parameters when identifying recommended solutions. For in-
stance, angles can be expressed in radians or degrees, and a unit of
1 may mean something different whether it represents an angle, a
length or an area. Currently it is up to the technical artists to pro-
vide a meaningful parametrization by converting parameters using
the math operation node. As a future work, we could add a seman-
tic meaning and a unit to each input parameter, and make custom
recommendations based on that. For example, we could favor pro-
portional changes for length parameters, and delta-like changes for
angle parameters. Also, we could add support for periodic bound-
ary conditions, useful for angle parameters. Another possible future
work would be to speed up global optimization and exploration of
the region of optimality by running multiple instances of the al-
gorithm in parallel with different random seeds. In addition to 3D
gizmos, we could implement other editing metaphors like brush
strokes or sketching. Having a UI that better exposes solutions sam-
pled from the region of optimality is an interesting future direction.
There might be other ways to identify interesting solutions: e.g., so-
lutions with inverse proportional dimensions, solutions close to a
canonical pose, and solutions with similar input parameters. Re-
garding the grouping and ordering of points, our system cannot
identify the dimensionality of the optimality region. It would be
interesting to try more powerful algorithms to explore and map the
structure of the optimality region, like non-linear PCA [SSM98].
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10. Appendix

10.1. List of procedural nodes implemented in our system

Following is a list of nodes implemented in ADPM:

The input variable node has no input and only one output: an
auto-differentiable value. This node is used to parametrize the pro-
cedural model. The node displays a few input widgets for the user
to edits the properties of the input value. A name can be given to the
variable. A check box sets the value to be a constant or a variable.
Another check box sets the value to be bounded within a minimum
and a maximum values. Finally, a slider allows the user to easily
set the value of the variable.

The convert object node takes as input an object oi and adds it to
the auto differentiable representation of the scene. Upon execution,
the node will assign an auto differentiable OBB to the object and
track any subsequent transformation made on it.

The transform node takes as input an object oi and a 3D vector
and applies an affine transformation (translation, rotation, scaling)
to oi. The autodiff local transformation matrix Mi of the object oi
is also transformed.

The apply transform node takes as input an object oi and ap-
plies its local transformation matrix Mi to oi and its OBB Bi. Then
1) each vertex v of the object oi becomes Miv, 2) the OBB is trans-
formed MiBi and finally, 3) the local transformation matrix is reset
to identity i.e.,Mi = I4. This node does not transform the object,
but it has an action on the scene tree. An example of its usage is
when an object is scaled, but the user does not want the scaling to
be propagated to the object’s children.

The joint node takes as input two objects: a child and its parent.
It translates the child object on one side of the parent’s oriented
bounding box. The user can choose one of the six sides with a
drop-down menu (±X ,±Y,±Z). If the two bounding boxes have
different sizes, it’s also possible to align the child bounding box ac-
cording to two other directions (left, center, right). An example of
using this operation is connecting parts of an object, and we used
this for the arms and legs of the centipede examples (See fig. 9).

The radius scattering node takes as input an object oi, and du-
plicates it n times in a circle around the origin of its parent object.
To control the layout of objects, the node takes additional input: 1)
the radius of the circle, 2) the scale to apply to the object, 3) the
phase of the rotation for the object. The radius scattering node is
demonstrated with the procedural succulent in Figure 11.

The matrix scattering node takes as input an object oi, and du-
plicates it n×m× k times respectively on X , Y , Z axis. It is similar
to the radius scattering node, except that it replicates the object on
a grid instead of a circle.

The math operation node takes as input two auto differentiable
values a and b and applies an operation to them. Operations that are
available include: a+b, a−b, a∗b, a/b, ab. Some opera-
tions require only one input to be connected: log(a),

√
a, −a.

Figure 12: Robotic arm with two solutions: We show the robotic
arm from Figure 10 and made an edit with some joints fixed to
force the system to only be able to find two solutions. In this case
the edit is not under-determined but there are two distinct solutions
to the inverse problem and our system is able to find them during
the global optimization phase. The solution on the left-hand side
is the nearest solution i.e.,the solution that changes the least the
angles. The solution on the right-hand side is the farthest solution
i.e.,the solution with the biggest changes in angles. Note that the
change that makes the right-hand side solution farther from the
initial configuration is very subtle: the first joint (on the bottom) is
rotated by 180 degrees.

Stool Rob. arm Cubes Succ1 Succ2
Local opt.n only

0
6 2

5 6
Nearest 4 2
Farthest 3 3 3 0 3
Delta-like change 2 1 0 0 5
Prop. change 14 0 0 11 4
Least change X1 2 7 1 5 3
Least change X2 N/A N/A 13 N/A N/A
Chi-squared value 29.71 10.71 35.29 23.76 5.05
Chi-squared sign. 0.00 0.06 0.00 0.00 0.28

Table 2: Quantitative user study results: For each procedural
model: Stool, Robotic arm, Cubes and two succulents, users where
asked to pick their preferred suggested solutions after an under-
determined edit. Each cell shows the number of times a user pre-
ferred one solution over the others. The Chi-squared significance
is the probability that the user preferences are following a uniform
random distribution.
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Modification
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x1.67
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Initial
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Constant X
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Objective function 
for the modification

Figure 13: Objective function for the modification of a cube stack with recommended models: The cube stack is a typical example of an
under-determined system. The bottom cube (green), the middle cube (blue) and the top cube (yellow) are stacked on top of each other. The
height of the bottom cube is controlled by the variable X, the height of the middle cube is controlled by the variable Y and the altitude of the
top cube is Z = X +Y . If we want to raise the altitude of the top cube, the system is under-determined and there are many ways to propagate
a change in Z back to X and Y . Our system finds many optimal solutions and present some recommendations to the user. The Initial image
shows the initial configuration with X = 0.5 and Y = 1.0, thus Z = 1.5. The Modification image shows the modification asked by the user:
Z becomes Z = 2.5. In the middle, we present the contour plot of the objective function induced by the modification made by the user. There
are two variables to the problem X and Y , which are both bounded between 0.0 and 2.0. The initial configuration is indicated by the red star
(X = 0.5 and Y = 1.0) on the contour plot. Per the modification asked by the user, we want to find X and Y so that Z = X +Y = 2.5. To
achieve this modification, we minimize the following loss function f (X ,Y ) = (X +Y −2.5)2. We can see on the contour plot that the region
of optimality is a line segment from (0.5, 2.0) to (2.0, 0.5) materialized by the set of black dots. Images of some of the optimal configurations
can be seen in Figure 14. Relevant configurations found by our optimizer are shown on the contour plot with symbols, and the corresponding
models are shown on the sides of the figure. The Delta-like image (symbolized by the yellow square) shows the solution that adds a constant
value (+0.5) to both X and Y . The Nearest image (symbolized by the yellow square) shows the solution that is the closest to the initial in
L2 norm. Note that for this particular problem, the delta-like configuration happens to be the same as the nearest configuration, but it is not
always the case. The Constant X image (symbolized by the white cross) shows the solution that best keep X constant. The Constant Y image
(symbolized by the white triangle) shows the solution that best keep Y constant. The Farthest image (symbolized by the magenta dot) shows
the solution that is the farthest from the initial in L2 norm. The Proportional image (symbolized by the yellow dot) shows the solution that
multiply both X and Y by a constant factor (×1.67).
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Figure 14: Cube stack ordering: We show samples of the ordered
optimal points. See Figure 13 for the description of the model and
the modification that lead to this set of optimal solutions. A total
of 118 non-duplicate optimal solution were found. All of them were
grouped into one group and ordered using the heuristic detailed in
Section 6.8. From the upper-left corner to the bottom-right corner
of this figure, we present 9 samples from the 118. We can see that
the order is going from small to large values of X (height of the
bottom cube).

X

Y

Movement

2D robotic arm

Objective function

Optimal solutions

Figure 15: Optimization of a 2D robotic arm: Example of a 2D
robotic arm with two degrees of freedom. The end effector is edited
to be sliding on the horizontal line, which defines the following ob-
jective function: f (x,y) = (sin(x) + 2sin(y))2. Our optimizer ex-
plores the optimality regions and finds different solutions to the
problem. For reference on the meaning of symbols in the objective
function plot, see the caption of Figure 13. These solutions are then
clustered into 5 regions of optimality and ordered as show in the
bottom sub figure. For more details on optimization and ordering,
see Figure 18.
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Result of the local optimization Nearest Farthest Delta-like change

Proportional change Least change on Z1 Least change on X1 Least change on Z2
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Figure 16: Robotic arm recommendations: This figure shows suggestions made by our system for an under-determined edit of the robotic
arm. The initial configuration (not shown here) is a straight robotic arm going up, with all angles set to 0 degrees. The Result of the local
optimization is the result after the first local optimization phase. The Nearest solution is the most similar to a straight robotic arm, in other
words it is the solution that changes angles the least. The Farthest solution is the most different solution, in this case it looks similar to the
Nearest solution, except that some joints are flipped 180 degrees. The Delta-like change solution is the solution that adds a constant value
to all angles. The Proportional change solution is the solution that applies a constant multiplication factor to all angles. All other solutions
are the ones with the least change on a certain joint in the robotic arm: Z1 is the first joint, X1 is the second joint, Z2 is the third joint, X2 is
the fourth joint, Z3 is the fifth joint, X3 is the sixth joint, End is the last joint. See the supplementary video for an animation of the optimal
solutions of the robotic arm for this edit.

Figure 17: Blender®procedural graph for the Stool shown in Figure 5. We recommend using our add-on to visualize graphs directly in
Blender®.
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Objective function Taylor approximation Error of approximation

Solutions 8 representatives Solutions ordered

Figure 18: Optimization: This Figure shows how our optimizer works on an objective function with 2 variables. Each sub figure shows
one aspect of the optimization. The Objective function plot shows a contour plot of the example objective function: f (x) = (‖x‖− 1)2. f
is of particular interest because its region of optimality is the unit circle. The Taylor approximation plot shows the second order Taylor
approximation of the objective function at the point p = (

√
2,
√

2) (red star in the plots), which is a local minimizer. The two arrows show
the eigenvectors of the Hessian matrix at point p. The white eigenvector has an eigenvalue of 0.0, and the orange eigenvector has a an
eigenvalue of 2.0. The white eigenvector is tangent to the region of optimality, thus going in this direction rather than in the direction of
the orange vector ensures that we stay close to the optimality region. The Error of approximation plot is the absolute difference between
the Taylor approximation in p and the value of f . It shows the region in which we can trust the second-order Taylor approximation. The
Solutions plot shows optimal solutions found during the exploration of the optimality region. For reference on the meaning of symbols, see
the caption of Figure 13. The 8 representatives plot shows the 8 K-Medoids of the optimal solutions, and the shortest Hamiltonian path going
through them. The Solutions ordered shows all optimal solutions in the order presented to the user.
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