
Sorghum Segmentation by Skeleton Extraction

Mathieu Gaillard1 , Chenyong Miao2 ,
James Schnable2 , and Bedrich Benes1

1 Purdue University, USA
bbenes@purdue.edu http://hpcg.purdue.edu

2 University of Nebraska–Lincoln, USA
schnable@unl.edu https://schnablelab.org/

Abstract. Recently, several high-throughput phenotyping facilities have
been established that allow for an automated collection of multiple view
images of a large number of plants over time. One of the key problems in
phenotyping is identifying individual plant organs such as leaves, stems,
or roots. We introduced a novel algorithm that uses a 3D segmented
plant on its input by using a voxel carving algorithm, and separates the
plant into leaves and stems. Our algorithm first uses voxel thinning that
generates a first approximation of the plant 3D skeleton. The skeleton is
transformed into a mathematical tree by comparing and assessing paths
from each leaf or stem tip to the plant root and pruned by using biolog-
ically inspired features, fed into a machine learning classifier, leading to
a skeleton that corresponds to the input plant. The final skeleton is then
used to identify the plant organs and segment voxels. We validated our
system on 20 di↵erent plants, each represented in a voxel array of a res-
olution 5123, and the segmentation was executed in under one minute,
making our algorithm suitable for the processing of large amounts of
plants.

Keywords: 3D Plant Reconstruction, Phenotyping, Sorghum, Skeleton
Extraction, Segmentation

1 Introduction

The architecture of plant organs such as leaves, stems, roots, and buds, plays a
significant role in determining plant growth, health, and yield. Di↵erent individ-
uals of the same species growing in the same environment will exhibit consider-
able di↵erences in architectural traits due to genetic di↵erences. Mapping and
identifying the genes which control variation in plant architecture is a critical
step in breeding new crop varieties that produce more food, use resources more
e�ciently, and are more resilient to changing environments.

Mapping genes controlling within-species variation in plant architectural
traits requires quantifying these traits, which requires the identification of plant
organs. Di↵erent approaches have been pioneered and applied in rosette plants
(e.g., arabidopsis, brassicas, etc.) using top-down photos and grain crops using
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side view photos. Skeletonization converts segmented images into graphs that
uniquely map onto the plant organs and quantifies architectural traits [3,4]. The
skeletonization of 2D side view images followed by computing on the resulting
skeleton is useful in segmenting individual leaves of maize and sorghum plants,
but is not robust to leaves that intersect from a single view [4].

Several high throughput phenotyping technology facilities have been built
that allow for controlled viewing and photographing of hundreds of plants [8,10,13].
The plants grow in a greenhouse, and they are regularly and thoroughly auto-
matically transported by using conveyor belts into imaging chambers where they
are photographed from several angles. Various methods for 3D reconstruction of
plants from these controlled environments have been developed [11,17]. We build
upon the work of Gaillard et al. [9] that reconstructs several photographs into
a voxel grid that approximates the plant’s geometry. While the voxel grid is an
excellent plant approximation, it does not carry semantic information, such as
the number of leaves, curvature, etc.

We present a novel method for extracting high-level semantic features from
discrete volumetric arrays obtained by using the voxel carving algorithm into
skeletons. The state of the art skeletonization algorithms perform poorly on
plants. We claim a contribution in a machine learning-based algorithm that im-
proves the plant skeletonization, allowing us to keep only the essential parts:
stem and leaves. These, in turn, are used for e�cient segmentation of the in-
put voxel grid. An example in Fig. 1 shows the input voxel grid, the extracted
skeleton, and the segmented output (open in Adobe Acrobat for animation).

a) b) c)

Fig. 1. Please open in Adobe Acrobat to see the animations. a) Input voxel
grid, b) extracted skeleton, and c) segmented plant organs.

2 Related Work

The space carving algorithm [16] retrieves 3D voxel positions that correspond to
an input object represented by a set of images. However, this method requires
precise calibration to retrieve the 3D positions. Also, an increasing number of
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images provides better results. This algorithm is highly suitable for controlled
environments. Novel algorithms and extensions add reconstruction of small plant
parts [12,14,15] or a hierarchical space enumeration by octrees [19]. Our work
builds on top of the work of Gaillard et al. [9] that provides 3D voxel reconstruc-
tion of Sorghum plants by using an improved voxel carving algorithm. Overall
336 Sorghum plants grown in the UNL phenotyping facility [10] were recon-
structed from only six RGB images (five side and one from the top) per plant.

3D reconstruction algorithms working in voxel space are not suitable for di-
rect measurements of organ-level features such as leaf size [12]. Skeletons [7]
provide an intuitive and simplified information about the topology of the shape
they represent. Skeletons can significantly help shape segmentation by guiding
it. However, while 2D skeletonization is well-understood and studied, the skele-
tonization of 3D shapes is much more complicated. First, 3D shapes can be
represented in di↵erent ways: for example, as a triangle mesh or a voxel grid.
Various data give rise to multiple types of 3D skeletons: surface skeletons have
a good correspondence to the input shape but are slower to compute and more
challenging to analyze. Curves skeletons do not strictly follow the mathematical
properties of skeletons, but provide better shape analysis capabilities as they de-
compose shapes into a set of 1D curves. They are of particular interest for plants,
which often have a tubular shape. For a detailed survey on 3D skeletonization, we
refer the reader to [20], in which Figure 21 is of particular interest to understand
the di↵erence between surface and curve skeletons. Existing skeletonization al-
gorithms [1], despite their strong mathematical properties, produce noisy results
on plants, and many specialized methods for plant skeletonization have been
developed. The work of [14] segments the 3D surface of a voxel grid using the
eigenvalues of the second-moments tensor. Also, a database of predefined leaves
has been fit on the skeletons extracted from the 2D views of the plant in [21].
Golbach et al. [12] use a flood fill algorithm to identify the stem. They measure
the spread of voxels added in each iteration during the graph traversal to detect
branches. Scharr et al. [19] find clusters of voxels in horizontal slices of the plant
from top to bottom. When merging two clusters, special rules are applied to
keep track of leaves. The most similar approach to ours [1] uses a skeletonization
algorithm and then filter skeleton branches based on their reprojections. Wu et
al. [22,23] use a Laplacian contraction, a generic skeletonization algorithm, to
shrink a point cloud and then post-process it to output measurements. Xiang et
al. [24] also skeletonize and segment a point cloud to measure traits in Sorghum
plants. Our algorithm can be thought of as a post-process of a segmentation
from voxels. We attempt to improve the skeleton with a particular focus on the
precise branching point used in a follow-up segmentation.

3 Overview

Our method works in three steps shown in Fig. 2: 1) thinning 2) skeleton filtering,
and 3) segmentation.
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b) Thinning e) Plant skeletona) Voxels c) Raw skeleton d) Skeleton pruning f) Segmentation g) Segmented plant

min
i

𝑥ଶ  𝑦ଶ

Fig. 2. System overview: (round boxes are processes and squared boxes are data):
a) the 3D model of the plant represented as a set of voxels is converted into a raw
skeleton by using b) the voxel thinning algorithm. c) The raw skeleton is d) filtered
to remove noise resulting in e) a smooth plant skeleton. The input voxels are then
f) segmented by using the skeleton resulting in g) a segmented set of voxels representing
plant organs.

Our algorithm’s input is a 3D reconstruction of a sorghum plant in the form
of a set of voxels. Our algorithm has two outputs: e) is the plant skeleton, and
g) is the segmented plant represented as sets of voxels corresponding to plant
organs: the stem and individual leaves. Both the plant and the skeleton are
represented in a voxel grid at the same resolution. The segmentation assigns a
unique identifier to each voxel.

Thinning: removes voxels from the input voxel set until only the raw skele-
ton remains (Sec. 4.1). The input to this step is a plant represented in a voxel
grid. Here we use the output of a voxel carving algorithm [9]. Although a smooth,
dense, and connected set of voxels provides good input, we designed our algo-
rithm to be robust against noise to successfully process reconstructed plants that
do not strictly adhere to these conditions.

Skeleton pruning: The output of the previous step is a raw skeleton that
is equidistant to boundaries. However, the noisy input leads to incorrect results
if used directly for leaf counting and plant segmentation. We introduce a novel
bio-inspired algorithm in Sect. 4.2 to prune the skeleton removing noisy parts
and keeping only the skeleton corresponding to actual leaves.

Segmentation: uses the skeleton calculated from the previous step to gen-
erate a segmented plant. We post-process the skeleton to identify the stem and
each unique leaf (see Sect. 5), and we assign all voxels from the full plant to its
nearest segment and represent them by a unique identifier.

Terminology: Let V denote the binary voxel grid that contains the recon-
structed plant (we use resolution of 5123 voxels). We refer to each voxel as vi,j,k
where 0  i, j, k  511 denote its discrete coordinates. A voxel vi,j,k = 1 belongs
to the reconstructed plant, zero voxels identify an empty space.

The raw (generic) skeleton is a set of voxels in V output by a thinning algo-
rithm, is denoted by Sraw. The set of endpoints in Sraw is denoted E = {Ei} with
Ei 2 V. The endpoint that designates the plant root is denoted v0 2 E , and Rpot

is the radius of the pot. The collection of paths Pi in Sraw from endpoints Ei to
the root v0 is denoted P = {Pi}. During the pruning step, paths Pi are labeled
in K = {Ki} as either kept (Ki = 1) or discarded (Ki = 0). The collection of
paths that are retained after pruning is denoted P⇤. Finally, the skeleton, which
is a set of voxels in V output by our algorithm, is denoted by S.
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4 Skeletonization

4.1 Thinning

The input to the first step is the voxel grid V model of the plant. The voxels
are converted to a raw skeleton by using a thinning algorithm; in particular,
we use the 3D critical kernel thinning algorithm from [6] implemented in the
DGtal library [5]. We chose the 1isthmus thinning algorithm because it is the
fastest algorithm in the library that outputs a curve skeleton. The algorithm
is left to default dmax, and the persistence is set to one. In principle, higher
persistence values decrease skeleton noise. However, for our dataset, this was not
always the case, and our domain-specific pruning algorithm performed better.

Although the critical kernel thinning algorithm is mathematically correct and
outputs a skeleton that accurately represents the topology of the plant from the
input voxel grid V, it also responds to the inevitable noise in the input leading to
a noisy skeleton that cannot be directly used for leaf counting and segmentation.
As shown in Fig. 3 column c), the skeleton is noisy, includes small branches and
some big lumps, mostly near the stem. Also, it is not guaranteed to have a tree
topology; in other words, it may contain loops. Therefore, we further process the
raw skeleton by pruning the unnecessary branches and filtering voxels in lumps.

4.2 Skeleton Pruning

A desired output of this algorithm would be one skeleton curve for the stem and
one per each leaf. Moreover, the branching pattern for sorghum plants should
only have one level of hierarchy i.e., the skeleton should not contain T-junctions
unless they are located between the stem and a leaf. Based on these biological
observations, our pruning method works in four steps: 1) endpoint identification,
2) root identification, 3) branch finding, and 4) branch pruning.

Endpoints identification: We identify all endpoints E = {Ei} in the skele-
ton obtained by thinning and denoted by Sraw. Endpoints are voxels having at
most one neighbor:

E =

8
<

:vi,j,k 2 V |
X

|(i,j,k)�(x,y,z)|1=1

vx,y,z  1

9
=

; (1)

and this includes isolated voxels without neighbors and voxels at the end of
skeleton branches. The set of endpoints is likely to be located on the leaf ends,
but it also includes some false positives.

Root identification finds the plant’s root v0 that is the starting point of
the stem. We define the root as the lowest endpoint that is located within the
radius of the pot Rpot:

v0 = arg min
vi,j,k2E

dez (vi,j,k)<Rpot

(k), (2)
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where dez (vi,j,k) is the distance from vi,j,k to ez, the z-axis. We constrain the
root voxel within the pot because we noticed that some leaf tips outside the
container could extend below the plant/soil interface level. The lowest endpoint
without this restriction could be a low-hanging leaf tip instead of the actual root.

Branch finding: The raw skeleton Sraw resulting from thinning is not guar-
anteed to have a tree topology: it can contain loops. To convert the graph into a
tree and discard some noisy parts, we run a single source shortest path on Sraw

starting from the root voxel v0. The output is the shortest path from every voxel
of Sraw to the root voxel v0. To accommodate potential disconnections in Sraw,
we allow the shortest path algorithm to jump between two voxels even if they are
not connected. We use the Dijkstra algorithm and add a penalty on the distance
if two voxels are not connected.

The distance d(v1, v2) between voxels v1 and v2 is computed as follow: if v2 is
in the 26-connected neighborhood of v1, then d(v1, v2) = 1. If v2 is within a cube
of length 48 around v1, we still consider them as connected and the penalized
distance is computed as a function of their Manhattan distance i.e., |v1 � v2|:

d(v1, v2) =

8
<

:

1 if kv1 � v2k1 = 1

|v1�v2|(1+|v1�v2|)
2 if kv1 � v2k1  24.

(3)

By still considering v1 and v2 connected but with a distance penalty, we allow
the algorithm to connect to the nearest voxel when there is a small discontinuity
between two parts of the plant. We empirically chose a maximum distance of
24 in infinity norm for jumping from a voxel to another. It provides a good
compromise between the computation time and the distance to which we want
to connect two plant parts.

The single-source shortest path algorithm generates a tree of voxels starting
from the root v0. As explained above in the Endpoints Identification step and
in Eqn(1) we may miss some leaf tips if there is a loop in Sraw. Therefore, we
update the list of endpoints based on the output of the Dijkstra algorithm. Any
voxel that has no predecessor and has at most two neighbors in Sraw is added
to the list of endpoints E .

Finally, we output a list of shortest paths P = {P0, P1, . . . }. The path Pi

starts from the endpoint Ei and goes all the way down to the root voxel v0, and
every path potentially includes a plant leaf. We sort paths in P by descending
length (longest leaf first). We also discard paths with a length of only one voxel
because they cannot connect to the root voxel.

Branch pruning: The collection of paths P represents a plant skeleton that
does not include loops nor lumps, and it is less noisy than the raw skeleton Sraw.
However, it may still include small spurious branches that do not correspond to
any actual leaf. These branches are a likely result of artifacts and irregularities
in the 3D reconstruction. They mostly consist of a small spike starting from the
middle of a leaf and going to another direction.

This is mitigated by pruning the paths and keep only those that bring the
most information. That is achieved by processing each path Pi, decreasing order
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of length, and considering every other shorter path Pj (therefore j > i). When
comparing two paths, Pi and Pj , we compute a set of features and use a machine
learning classifier to decide whether we keep or discard the branch Pj . We detail
the di↵erent classifiers and the learning procedure we used in Sect. 6. We repeat
the classification for each path in P, making in total n(n � 1)/2 comparisons,
with n being the number of paths in P. The procedure is detailed in Alg. 1.
Paths that are not discarded are kept in a new list P⇤

P⇤ = {Pi 2 P | Ki = 1} . (4)

Finally, the union of voxels from all paths in P⇤ forms the plant skeleton S. An
example of such a skeleton can be seen in Figure 3 b).

Data: P is a list of paths ordered by decreasing length
Result: K a label for each path stating that a path should be kept or discarded in the

output skeleton.
/* This algorithm discards paths that are not relevant. */

1 K  {1}n
1 ; /* By default, we keep all paths. */

2 for i 2 {1 . . . n} do
3 if Ki = 1 then
4 for j 2 {i + 1 . . . n} do
5 if Kj = 1 then

/* Run the classifier for the paths: Pi and Pj. */
6 if runClassifier(Pi, Pj) == false then

/* Let’s discard Pj. */
7 Kj  0;
8 end
9 end

10 end
11 end
12 end

Algorithm 1: Creation of the training data set L from an annotated skeleton

5 Segmentation

In this section, we detail how we segment the input set of voxel V into individual
leaves by using the skeleton S. This algorithm proceeds in two steps: we first
segment the skeleton and then the full plant.

Skeleton segmentation segments each path in P⇤ from the skeleton S into
a stem part and a leaf part. The stem is composed of all voxels that are shared
between at least two paths. To find voxels that are shared, we compute the
histogram of occurrences for each voxel of the skeleton S. If a voxel appears at
least twice in S, it is considered to be a part of the stem. Once the stem has
been identified, we remove all stem voxels from all other paths in P⇤, and the
remaining voxels correspond to the leaves. Although our approach works on well-
reconstructed plants, by construction, we do not guarantee that the skeleton has
the right topology with poorly reconstructed plants, which have merged leaves.
Therefore, it is necessary to check whether the topology, i.e., the stem should



8 M. Gaillard et al.

not have any T-junctions. We discuss this issue in Sect. 7. Moreover, we also
consider the root to be inside the pot.

Plant segmentation: We segment the full plant according to the skeleton S.
Each voxel vi,j,k of the plant is assigned to the nearest segment of the segmented
skeleton S. Figure 3 c) shows the final segmented plants.

6 Branch Classification

Below we explain how we designed and trained machine learning classifiers used
in Sect. 4.2 to prune a raw plant skeleton. We trained three di↵erent classifiers for
this task (linear SVM, SVM with RBF kernels, and a Multi-Layer Perceptron)
and compared them.

6.1 Data Set

To train our classifiers, we manually annotated 100 plant skeletons by choosing
from a pool of 351 sorghum plants. We decided to discard plants that are poorly
reconstructed, including merged leaves, missing leaves, or excessive numbers of
noise voxels (for example, leaf-like reconstruction artifacts). Since we feed our
machine learning classifiers with handcrafted features and are not learning the
data representation, we do not use any form of data augmentation.

For each skeleton, we looked at each path Pi 2 P before the pruning step
(see Sect. 4.2) and we annotated it in K by marking whether it should be kept
(Ki = 1) or discarded (Ki = 0) in the final plant skeleton P⇤. In our data set, P
contains 108 paths on average before pruning, and P⇤ contains only seven paths
after pruning. Annotation is a tedious task, and completing annotations for 100
plant skeletons took about a week of e↵ort by a trained expert.

To train the classifiers, we transform the data set into a list L of triplets
[Pi, Pj , keep], with a binary label keep that indicates whether Pj should be kept
or discarded when compared to Pi. We detail the method to generate triplets in
Alg. 2. The main idea is that a path that is kept should never discard another
shorter path that is kept. Moreover, only one longer path is needed to reject a
given path that is not supposed to be kept. When a path Pj has to be discarded,
we only add the triplet with Pi, the shortest longer path that is the most similar
to Pj . By doing so, we guarantee that Pi is discarded at least once. Any other
decision made regarding Pi is not essential.

Once the data set L of triplets is built, we compute a set of features for each
pair of paths that are input into the classifier. After trying di↵erent combinations,
the set of features we retained includes: 1) the number sij of voxels that Pi

and Pj have in common 2) the number ej = length(Pj)� sij of voxels that are
included only in Pj , and 3) the ratio of the shorter path Pj that is shared with
Pi: pij = sij/length(Pj).

Our interpretation of the role of the features is that: 1) estimates the position
of a branch in the plant (bottom or top), 2) estimates the length of a branch
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Data: P is a list of paths, ordered by increasing length and K is a label for each path
stating that a path should be kept or discarded in the output skeleton.

Result: L is the set of triplets [Pi, Pj , keep] for training.
1 for j 2 {1 . . . n} do
2 if Kj = 1 then
3 for i 2 {j + 1 . . . n} do
4 if Ki = 1 then
5 L L [ Pi, Pj , true;
6 end
7 end
8 else

/* We look for the shortest most similar path longer than Pj

That is, the first path Pi that maximizes sij. */
9 k  j;

10 mostNbCommonV oxels 0;
11 for i 2 {j + 1 . . . n} do
12 if Ki = 1 then
13 sij  computeNumberCommonV oxel(Pi, Pj);
14 if sij > mostNbCommonV oxels then
15 mostNbCommonV oxels sij ;
16 k  i;
17 end
18 end
19 end
20 if k > j then
21 L L [ {Pk, Pj , true};
22 end
23 end
24 end

Algorithm 2: Creating the training data set L from an annotated skeleton.

(short or long), and 3) estimates the information brought by a branch compared
to a longer branch.

Classes in our data set are unbalanced, and L contains significantly more pairs
of branches that should be discarded than couples to keep. Thus, we balance the
data set by applying weights on each sample.

We randomly split the 100 annotated skeletons into 64 for training, 16 for
validation, and 20 for testing. As a reference, on the one hand, the 80 skeletons
in the training and validation set generate 9,877 triplets. On the other hand, the
test set generates 2,422 triplets.

6.2 Classifiers

The input to our classifier is a set of three features computed on a pair of paths Pi

and Pj in the raw skeleton Sraw. The output is a binary decision: true means that
we keep path Pj , false means that we discard it, and we tested three di↵erent
classifiers. We used machine learning models with handcrafted features because
we do not have an extensive data set to allow automatic feature learning. After
all, manual labeling is a very time-consuming process. Moreover, it is easier for
a human to interpret the predictions.

We tested a linear SVM based on the shared proportion feature pij . This
classifier finds the cuto↵ value of pij that linearly separates branches that should
be kept from those that should be discarded. Although simple, it performs rel-
atively well and can be easily implemented as a single if condition in the code.
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Experimentally, we found the cuto↵ value to be pij = 0.65, and we used this
classifier as a reference for more complicated models.

The second model we tested is a SVM with RBF kernels based on the
three features. We trained by using grid search and ten-fold cross-validation on
the training set.

The third classifier is a Multi Layer Perceptron containing an input layer
with three units, followed by two eight-units hidden layers, and finally a one-unit
output layer. Input features are normalized, and all units use a Sigmoid activa-
tion function. For training we use the batch RPROP algorithm [18] implemented
in the OpenCV [2] library.

6.3 Evaluation

We run the branch pruning algorithm (Alg. 1 in Sect. 4.2) on the test set of 20
skeletons, and we used information retrieval evaluation measures to compare the
di↵erent classifiers. For each skeleton, we compared the set of branches selected
by the branch pruning algorithm to the ground truth K. Let’s denote by tp
(true positive) the number of successfully reconstructed branches i.e., selected
branches that are in K; let’s further denote fp (false positive) the number of
branches that were selected even if they were not in K; we also denote fn (false
negative) the number of branches that were not selected even if they were in K.
Finally, tn (true negative) is the number of successfully discarded branches. We
compute the precision

precision =
tp

tp+ fp
, (5)

which is the proportion of selected branches that are relevant, recall

recall =
tp

tp+ fn
, (6)

is the proportion of relevant branches that are selected, and the F-measure

Fmeasure = 2 · precision · recall
precision+ recall

, (7)

is the harmonic mean of precision and recall and gives an overall score for the
quality of the branch pruning.

Evaluations of our three di↵erent classifiers on the training and validation
set are given in Table 1 and on the test set are given in Table 2. While the three
classifiers performed comparatively, the RBF SVM classifier provided the best
results based on the evaluation metrics used in this paper.

7 Results

We have implemented our method in C++ and run it on a workstation equipped
with an Intel Xeon W-2145. We did not use any GPU acceleration, and, on av-
erage, the thinning step takes 43 seconds, and the pruning and the segmentation
steps take 10 seconds per plant.
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Table 1. Evaluation of the classifiers on the Training + Validation set.

tp fp fn tn Precision Recall F-measure
Linear SVM 535 27 29 8,057 0.952 0.949 0.950
RBF SVM 549 15 15 8,069 0.973 0.973 0.973
MLP 551 24 13 8,060 0.958 0.977 0.968

Table 2. Evaluation of the classifiers on the Test set.

tp fp fn tn Precision Recall F-measure
Linear SVM 131 8 8 1,990 0.942 0.942 0.942
RBF SVM 135 5 4 1,993 0.964 0.971 0.968
MLP 136 7 3 1,991 0.951 0.978 0.965

We use the 20 plants in the test set to validate our method. We visually
inspected each plant to make sure that the leaves are at the right location and
the topology of the skeleton is correct. Table 2 from Sect. 6.3 shows that 97.1%
of branches were successfully reconstructed and among reconstructed branches,
96.4% were relevant. Note that the RBF SVM classifier misclassified only 9
branches out of 2,128 (135 true positives and 1,993 true negatives).

We used two measures to automatically get an insight into how well a plant
is skeletonized. 1) We compute the maximum distance from any voxel in V to
the skeleton. If this distance is too high (e.g., more than 5 cm), it indicates that
one leaf is likely missing in the skeleton. If this distance is small, it could suggest
that some spurious branches were not discarded. 2) We look at the skeleton’s
topology with the assumption that the stem should not include any T-junctions.
If these two measures fail, the plant needs to be visually inspected.

One plant (1) from the training set and four plants (2, 3, 4, 5) from the test
set are shown in Fig. 3 and additional results are in Fig. 4. Column (b) shows
the skeleton output by our method, and segmented plants are in column (c).

Failure cases: Some plants have a wooden stick in their pot, and in some
cases, a leaf happens to be reaching under the lowest part of the stem. If such
features are reconstructed within the container radius Rpot, the algorithm will
erroneously identify them as the root voxel v0. Although it does not a↵ect count-
ing and measuring leaves, we get the wrong length for the stem.

If the input voxel plant is poorly reconstructed and contains leaves that are
merged because they are too close, the algorithm for the shortest path compu-
tation can jump between the leaves, because the overall cost is cheaper than
staying on the correct leaf. In this case, the two leaves will have the same start-
ing point but two distinct tips. Depending on the rest of the plant, its topology
may even become wrong with a T-junction on the stem. This case is shown in
Fig. 3 (2), where the top left leaf is merged to the top leaf. This failure case is
not critical when counting leaves, but causes errors in length estimation, by up
to a few centimeters.

If the branch classifier makes an erroneous decision during the skeleton prun-
ing step, a leaf can be missed because it has been filtered, as shown in Fig. 3 (3).



12 M. Gaillard et al.

Conversely, an extra leaf can be left after the pruning step, as can be seen in
Fig. 3 (4). It happens especially when voxel carving with a low number of views
has been used because it creates leaf-like artifacts.

If a plant is poorly reconstructed and some voxels at the tips are missed,
our method, which is only based on input voxels from V, will only output a
truncated skeleton because it does not take in account 2D pictures of the plant.
This is the reason why skeletons in column (b) of Fig 3 do not always extend to
the end of leaves, because our input voxel plants are not entirely reconstructed.
This problem is inherent to voxel carving. To mitigate it, we would need to
improve calibration and use multiple cameras instead of a single camera with a
turntable.

8 Conclusions and Future Work

We have introduced a novel method for generating skeletons and segmentation
of voxel data generated by the voxel carving algorithm that is commonly used
by phenotyping facilities to create 3D approximations of measured plants. We
tested three di↵erent classifiers to prune leaves from raw plant skeletons, and our
validations using manually labeled data show that the RBF SVM classifier pro-
vided the best results. Furthermore, we used the generated skeleton to segment
the input voxel data into the plant’s leaves and stem. Each voxel is assigned an
identifier that defines the plant organ it belongs.

A limitation of our work, and a possible extension as a future work, is the
lack of labeled data. The input data is complicated, and an educated person can
use only manually label branches. Having an automatic annotation tool would
greatly help to expand the training set. It would be interesting to provide a
pixel-based performance metric for the segmentation. We do not guarantee that
the constructed skeleton’s topology is correct because it can have T-junctions
if the input plant is poorly reconstructed. Although it covers a vast majority
of cases we encountered, we think it is possible to extend the algorithm with
backtracking to ensure that the skeleton has a correct topology, even if it features
merged leaves. Top and small leaves are hard to identify, as shown in Sect. 7. We
could extend the algorithm and use many stages of the same plant over time to
discriminate growing leaves from artifacts using a later stage of the plant where
the di↵erence is noticeable. Finally, starting from annotated voxels generated by
our tool and corrected by experts, one could develop fully automatic machine-
learning classifiers that would allow for fast and reliable segmentation at the
voxel level.
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Fig. 3. Columns: (a) Raw skeleton resulting from thinning, (b) skeleton after the
pruning step, and (c) segmented leaves and stem. (1) a correctly segmented plant, (2)
a successfully segmented complex plant from the test set. The blue leaf (the top left
one) is o↵ because in the reconstructed plant, leaves are merged. (3) A plant from the
test set with the top leaf missing. (4) Another plant from the test set with a spurious
missing (see the dark green area between the orange and red leaves). (5) A correctly
reconstructed small plant from the test set.
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Fig. 4. Additional examples (a) Raw skeleton resulting from thinning, (b) skeleton
after the pruning step, and (c) segmented leaves and stem.
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