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ABSTRACT. Activations of units within top layers of convolutional neural networks (CNN features)
are known to be good descriptors for image retrieval. In this paper, we investigate the use of
CNN features for Reverse Image Search. We especially evaluate the robustness of these features
against common modifications. In a first part, we present a benchmark to evaluate the retrieval
performances of Reverse Image Search systems. To get a baseline, we evaluate well-established
methods: Perceptual Hash Functions. In a second part, we further evaluate the retrieval perfor-
mances of CNN features. We establish that CNN features perform better than Perceptual Hash
Functions, even if neural networks are trained on unrelated classification tasks. CNN features
are more robust against rotation and cropping. Finally, we give a list of layers from different
neural networks that are remarkably good descriptors when used with a cosine distance.

RESUME. Les activations des unités des couches supérieures des réseaux de neurones a con-
volution (caractéristiques CNN) se sont révélées étre de bons descripteurs pour la recherche
d’image. Dans ce papier, nous étudions les caractéristiques CNN pour la recherche d’image in-
versée. Nous évaluons la robustesse de ces caractéristiques contre des modifications courantes.
Dans une premiere partie, nous présentons un benchmark de systemes de recherche d’image
inversée. Pour référence, nous évaluons des méthodes traditionnelles : comme les fonctions de
hachage perceptuel. Dans une seconde partie, nous évaluons les caractéristiques CNN. Nous
montrons que les caractéristiques CNN sont plus performantes que les fonctions de hachage
perceptuel, méme dans le cas de réseaux de neurones entrainés sur des tdches de classification
non liées. Les caractéristiques CNN sont plus robustes contre les rotations et le rognage. Fi-
nalement, nous dressons une liste de couches de différents réseaux de neurones qui sont de bons
descripteurs lorsqu’ils sont comparés avec une distance cosinus.
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1. Introduction

As it is easy for people to take, store and share pictures, a massive number of
images appears every day on the internet. To enable indexing, searching, processing
and organizing such a quickly growing volume of images, one has to develop new
efficient methods capable of dealing with large scale data.

Lately, several systems have been launched and allow the user to find the original
of an image in a large image collection given a slightly modified version of it: for
example, Google Images, TinEye and Microsoft PhotoDNA. Those, called Reverse
Image Search (RIS) systems, are extensively studied because of their applications in
the context of intellectual property and crime prevention.

Basically, in image retrieval, one extracts high-dimensional feature vectors from
images on which a nearest neighbor search is then performed to query images by
similarity. With a very large collection of images, representations should be as small
as possible to reduce storage costs. Additionally, a data structure should allow for
sublinear-time search in the database of image representations. Traditionally, meth-
ods are based on image descriptors such as color histograms, CEDD, SIFT, GIST or
perceptual hashing functions.

The idea of perceptual hashing is to map similar (resp. dissimilar) inputs into
similar (resp. dissimilar) binary codes according to a selected distance. This approach
works very well because binary codes are compact and easy to handle on computers.
Furthermore, recent work showed that it is possible to search binary codes in sub-
linear time for uniformly distributed codes. However, as shown in this paper, state
of the art perceptual hashing functions are not robust against cropping and rotations.
Thus, the design of robust reverse images search system is still an open question.

Lately, great advances have been made in computer vision, especially in the field
of deep learning. Whereas traditionally, the previous works in computer vision were
based on hand-engineered features, convolutional neural networks can automatically
learn the features to extract from a dataset of images. Moreover, the computational
power of the latest GPUs allows learning on huge datasets, which means that learnt
features are of a very high quality.

The key observation is that the activations within the top layers of a large convo-
lutional neural network (CNN) provide a high-quality descriptor of the visual content
of an image. Even when the convolutional neural network has been trained on an
unrelated classification task, its retrieval performance is still very competitive. These
features can be used in the context of Reverse Image Search.

The main contribution of this article is the comparison of the retrieval perfor-
mances of: firstly, traditional perceptual hash functions (DCT, MH and RH), and
secondly existing convolutional neural networks trained on ImageNet (VGG, Incep-
tionV3, ResNet50).

This paper is organized as follows:
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Section 2 — Reverse Image Search: presents the general concept of Reverse Image
Search. This section explains how such a system usually works and what it is
commonly used for.

Section 3 — Perceptual hashing: presents the general concept of Perceptual hashing,
which is one well-established solution to build a Reverse Image Search system.

Section 4 — Convolutional Neural Networks: presents the concept of convolutional
neural networks and shows that they can extract excellent image representations.
Those can be used to build a Reverse Image Search system.

Section 5 — Benchmarking: presents our benchmark to compare the robustness of
Reverse Image Search techniques. We also present the results of the benchmark
obtained with the three perceptual hashing functions presented in section 3.

Section 6 — CNN Features robustness: presents our main contribution. We im-
plemented the benchmark presented in section 5 with features extracted using
already existing convolutional neural networks. We then compare their retrieval

performances to those of the perceptual hashing functions presented in section
3.
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2. Reverse Image Search

This section presents the general concept of Reverse Image Search and explains
how such a system usually works and what it is commonly used for. It generally
consists of a way of representing images and a distance between these representations.
A query consists in a nearest neighbor search using this distance. We briefly give
examples of algorithms to extract image representations and distances that can be
used to compare them.

2.1. Definition

To better understand the definition and context of the Reverse Image Search prob-
lem, we first give the definition of two more general problems: Image Retrieval and
Content-based Image Retrieval.

An image retrieval system is a computer system for browsing, searching and re-
trieving images from a large database of digital images (Baeza-Yates et al., 1999).
Examples of such a system are Google Image' and Bing Image®, where the user writes
a text query and have a list of images in return.

Content-based image retrieval (CBIR) is the application of computer vision tech-
niques to the image retrieval problem. "Content-based" means that the search analyses
the actual content of the image rather than the metadata such as keywords, tags, or de-
scriptions associated with the image. (Datta ez al., 2008) An example of such a system
is Google Image, where the user can perform a search by image, either by URL or by
uploading a file. If one submits an image of a cat, in return we will get images of
visually similar cats, but not necessarily the exact same cat.

Reverse image search (RIS) is a content-based image retrieval (CBIR) query tech-
nique. The aim of a RIS system is to find the original of an image in a large image
collection given a slightly modified version of it. An example of such a system is 7in-
Eye3, where the user can submit an image and find out where this exact image appears
on internet.

2.2. Usage

The main applications are listed in the FAQ* of TinEye.

— Find out where an image came from, or get more information about it

— Identify duplicate images

. www.google.com
. www.bing.com
. Www.tineye.com

F N S

. www.tineye.com/faq
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— Find a higher resolution version of an image

Locate web pages that make use of an image you have created

Discover modified or edited versions of an image

Show that the information provided with an image is false

Following are more specific use cases: A dating site can verify that a profile is
authentic. An insurance company can detect fraud. Trademark offices can identify
infringing trademarks. A museum can provide a mobile application on which the
user can have additional details about a painting. A brand can replace QR codes and
connect a printed catalog to an ecommerce platform.

2.3. General framework

Most approaches to Reverse Image Search share a similar pattern. It consists of:
firstly, a way of representing an image, and secondly, a distance (or similarity) measure
between two representations. As shown in figure 1, RIS systems usually work in two
phases: indexing and searching. During the indexing phase, representations of all
the images in a collection are extracted and added to a database. The images are not
necessarily stored in the database; this reduces its size. Afterward during the searching
phase, a query image is presented to the system and its representation is extracted. A
nearest neighbor search is then performed with the query representation, using the
previously defined distance measure, to search for similar images in the database.

Reverse Image Search with large collections of images imposes two challenging
constraints on the methods used. Firstly, for each image, only a small amount of data
can be stored; secondly, queries evaluation cost must be very cheap.

2.4. Image representation

The image representation is usually a p-dimensional vector of numerical features
or a ¢g-bit binary code. The feature vectors should be compact, in order to store mil-
lions of them in a database. Many algorithms are able to extract feature vectors from
images based on color, texture, shape. We can classify features in two categories: low-
level features, which are minor details of the image that are detected by simple algo-
rithms: edges, corners, and so on, and high-level features, which carry more semantic
and thus are better understandable by humans: objects, actions, and so on. High-level
features are difficult to extract for computers because it is hard to understand the se-
mantic of an image, this is currently an active research field. In the following part, five
well-established methods to extract low-level features from images are described.

A very simple approach is to compute the color histogram of an image. The im-
age representation in this case is an integer vector of N-bins. If there are too many
different colors in the image, it is possible to subsample the color space. Comparing
two histograms is similar to comparing two discrete probability distributions. It is
commonly done using one of the following distance: the population Pearson correla-
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Figure 1. General framework for Reverse Image Search with fixed-radius nearest
neighbor search.

tion coefficient, the Chi-Square distance, the Bhattacharyya distance (Bhattacharyya,
1943), the Wasserstein distance, also known as the Earth mover’s distance (Rubner et
al., 1998).

Color and Edge Directivity Descriptor (CEDD) (Chatzichristofis, Boutalis, 2008)
combines, in one histogram, color and texture information. The feature vector size is
up to 54 bytes per image. The similarity between two CEDD histograms is measured
with Tanimoto coefficient.

Scale-invariant Feature Transform (SIFT) (Lowe, 2004) extracts distinctive invari-
ant features from images that can be used to perform reliable matching between differ-
ent views of an object or scene. The features are invariant to image scale and rotation,
and are shown to provide robust matching across a substantial range of affine distor-
tion. SIFT detects keypoints in the image and compute small descriptor for each of
them. The number of keypoints can vary and this is why a feature vector extracted
with SIFT does not have a fixed length. To compare two images, their keypoints are
matched by identifying their nearest neighbors, which can be very costly dependend-
ing on the number of keypoints.

The GIST descriptor was initially proposed in (Oliva, Torralba, 2001). It is based
on Gabor filters, which measure the orientations and spatial frequencies, and describes
a scene with a set of perceptual dimensions (naturalness, openness, roughness, expan-
sion, ruggedness). The GIST description is a feature vector of dimension 960, which
can be compared with an Euclidean distance (Douze et al., 2009).
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In section 3, we give a detailed presentation of perceptual hashing, whose idea is
to map similar (resp. dissimilar) inputs into similar (resp. dissimilar) binary codes
according to a selected distance.

2.5. Distance

To compare two image representations one has to choose a distance or similarity
function. Depending on the image representation, many distances are possible. In this
subsection, we present two distances between p-dimensional vectors and one distance
between binary codes. Those are used later in this document.

2.5.1. Distance between two p-dimensional vectors

If the image representation is a p-dimensional feature vector, following are two
distances or similarities between z € R?P and y € RP.

Minkowski distance, also known as the p-norm distance, is a generalization of
Manhattan and Euclidean distances. Euclidean distance can be interpreted as the or-
dinary straight-line distance between two points in Euclidean space.

n 1/p

dminkowski ('Ta y) = Z |IL‘1 - yz|p
=1

When p = 1, the Minkowski distance is equivalent to the Manhattan distance.
When p = 2, it is equivalent to the Euclidean distance. If the function is used to rank
vectors according to their distance we can save time by not computing the nth root
because this function is monotonically increasing.

Cosine similarity measures the cosine of the angle between two vectors. The
cosine similarity is equal to 1 if the angle between vectors is 0. It is equal to O if the
angle between vectors is /2.

Scosine(x»y) = COSs 9(1', y) = m

cos™! Scosine (:Ca y)

™

dcosine (JC, y) =

For example, the cosine similarity is used in information retrieval. In this field,
documents are often represented as vectors containing the number of occurrences of
terms. The cosine similarity is meaningful to measure the similarity of two documents
regarding their subjects. In facts, what is important is not the number of times a term
appears, but whether it appears or not.

Cosine similarity is related to Euclidean distance if the vectors are normalized to
unit length.
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lz=yl* = (2—y)-(z—y) = watyy—2ay = [lz|*+]ylI*~2(|2[*|ly]* cos O(x, )

Because ||z|| = ||y|| = 1, we can conclude:

lz = y[|* = 2(1 — cosO(z, y))

2.5.2. Distance between two binary codes

If the image representation is a g-bit binary code, following is a distance between
a€[0,1]2and b € [0,1]9.

Hamming distance is the number of positions at which the bits are different. It
measures the edit distance between two binary codes if the only allowed operation to
transform the code is to flip a bit.

n

dhamming(aa b) == Z(al D bz)

i=1

On computers, this distance is straightforward to compute because it is the number
of ones (population count) in the XOR of two binary codes. Since the population count
and XOR are two basic operations in modern CPUs, the computation of Hamming
distance is very efficient.

2.6. Nearest Neighbor Search

Nearest Neighbor Search (NNS) is the problem of finding in a database all the
items whose distances to a query item are the smallest. Two variants are interesting
for CBIR and RIS: k-nearest neighbors search and fixed-radius near neighbors.

K-nearest neighbors search aims to find the k nearest neighbors of a given query
point. Usually the results are ordered by decreasing similarity (i.e. increasing dis-
tance). When applied to CBIR it is interesting in order to explore an image collection,
because if the first results are not interesting, one can just look at the following results.

Fixed-radius near neighbors aims to find all points that are within a radius of a
given query point. Even if it is possible to sort the results according to the distance,
the results should be considered as a set of unranked images. When applied to CBIR,
this method is interesting for identifying content because only relevant images are
returned, thus the result is composed of a varying number of images. The determi-
nation of an adequate radius, in accordance with the actual application, is critical.
Information retrieval research has shown that precision and recall follow an inverse
relationship (Datta et al., 2008). If the radius is too low, the precision is better at the
expense of the recall, and vice versa. Depending on the application, one can want to
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favor precision, to authenticate content because there is fewer false-positives, or recall,
to identify content because the user can deal with false positives.

Suppose our dataset is composed of p-dimensional feature vectors in a Euclidean
space D = {z;};_, where z; € RP. Let z € RP be a query feature vector, the
one-nearest neighbor of the query z is defined as:

KNN(z) = argmin||z — z;||?
1<i<n

Let r € RT be a radius, the fixed-radius nearest neighbors of the query z are
defined as:

FRNN.(2) ={y € D[ |ly —z[ <}

For p-dimensional feature vectors, there exist algorithms for exact nearest neighbor
search such as the k-d tree, R-tree or MVP tree. But unfortunately, because of the
curse of dimensionality, they are not efficient for high dimensional data (more than
20 dimensions). For this reason, Approximate Nearest Neighbor Search (ANNS) is
gaining more interest because it allows for faster searching time with only small actual
errors. In any case, we can refine a list of approximate nearest neighbors by pruning
the items with the actual distance on the original features. The Locality Sensitive
Hashing (LSH) framework is one approach to Approximate Nearest Neighbor Search
and is detailed later in this part.
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3. Perceptual Hashing

This section presents the general concept of Perceptual Hashing, which is one
well-established solution to build a Reverse Image Search system. Firstly, we give
a detailed definition of Perceptual Hashing. Secondly, we show that it can be used
in other contexts, such as digital watermarking. Finally, we give three examples of
traditional perceptual hashing functions: The Discrete Cosine Transform (DCT) based
perceptual hash function, the Marr-Hildreth (MH) based perceptual hash function and
the Radial Variance (RV) based perceptual hash function.

3.1. Definition

A perceptual hash function is a type of hash function that has the property to return
analogous outputs if inputs are similar. This allows one to make meaningful compar-
isons between hashes in order to measure the similarity between the source data. The
definition of a hash function according to (Menezes et al., 1996) is:

A hash function is a computationally efficient function mapping binary
strings of arbitrary length to binary strings of some fixed length, called
hash-values.

In the case of a perceptual hash function, four more properties should be present
according to (Zauner, 2010):

Let H denote a hash function which takes one media object (e.g. an im-
age) as input and produces a binary string of length [. Let = denote a
particular media object and x denote a modified version of this media ob-
ject which is "perceptually similar” to z. Let y denote a media object that
is "perceptually different" from . Let 2" and 3/ denote hash values. 0, 1/
represents binary strings of length [. Then the four desirable properties of
a perceptual hash are identified as follows.

A uniform distribution of hash-values; the hash-value should be unpre-
dictable.

vz’ € {0,1}!
Pairwise independence for perceptually different media objects.

P(H(x) =a'|H(y) = y') = P(H(z) =a') Va',y" € {0,1}'

Invariance for perceptually similar media objects.
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Distinction of perceptually different media objects. It should be impos-
sible to construct a perceptually different media object that has the same
hash-value as another media object.

Most of the time, to achieve these properties, the perceptual hash function ex-
tracts some features of media objects that are invariant under slight modifications. For
example, knowing how a compression algorithm works, it is possible to find some
invariant features and then design a perceptual hash based on them. Some examples
of perceptual hash functions for images are detailed later in this section.

3.2. Usage

Although Perceptual hash functions can be used in the context of CBIR or RIS
for representing images, they are also useful in other contexts. Due to the properties
inherited from the hash functions they can be used to authenticate media objects even
if they are slightly modified, for example lossy compressed. The image creator can
generate a perceptual hash from his original work. Then, as explained in (Zauner,
2010), he has two options.

On the one hand it is possible to sign the perceptual hash with a private key in
order to have a digital signature that is robust to slight modifications, for example
JPEG compression. This measure protects the receiver of the media object because he
can check its authenticity.

On the other hand, it is possible to use the perceptual hash for digital watermarking.
This measure protects the content author. For example, a different watermark can be
applied on different images. Then if an illegal copy is found the copyright owner can
infer who is responsible for the data leak.

3.3. Examples

In this section, we present the three examples of implementations of perceptual
hash functions, which take images and output binary codes, from (Zauner, 2010).

The Discrete Cosine Transformation (DCT) based perceptual hash function takes
advantage of the property that low-frequency DCT coefficients are mostly stable under
image modifications to construct a 64 bits binary code, which are compared with a
Hamming distance.

The Marr-Hildreth (MH) operator, also denoted as the Laplacian of Gaussian
(LoG), is a special case of a discrete Laplace filter. It is an edge and contour de-
tection based image feature extractor. The MH operator generates vectors encoded on
576 bits.
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The Radial Variance hash is based on the Radon transform that is the integral
transform which consists of the integral of a function over a straight line. It is robust
against various image processing steps (e.g. compression) and more robust than the
DCT and MH based perceptual hash functions against geometrical transformations
(e.g. rotation up to 2 degrees).
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4. Convolutional Neural Networks

This section presents the concept of convolutional neural networks. Firstly, we
briefly explain how they work. Secondly, we show that they can extract excellent
image representations in the context of image retrieval, thus their use for Reverse
Image Search is of interest. Finally, we present three existing models, which perform
particularly well on the ImageNet dataset. Retrieval performances of these neural
networks are evaluated in section 6.

4.1. Definition

A Convolutional Neural Network (CNN) is a class of feed-forward neural network.
CNN are mainly applied in the fields of computer vision and natural language process-
ing. It has been first presented in (LeCun ez al., 1998). Recent progresses have led to a
gain in interest in this method and also in a broader field called Deep Learning, which
is described in (LeCun et al., 2015). This section is mainly based on this latter article.
It has been a great discover because this class of network is able to automatically learn
the features to extract from a dataset. Whereas traditionally, the previous works in
computer vision were based on hand-engineered features. This difference is essential
because the key success factor of CNN is the amount of data and computation power
available instead of field knowledge.

CNN are inspired by our visual cortex, in particular, the connectivity pattern be-
tween layers of artificial neurons is restricted to a region as it is in our visual system
with receptive fields. With this special connectivity pattern, CNN take advantage of
natural signals, which are often locally highly correlated. Another property of natural
signals is the fact that the local statistics of images are invariant to location. If a motif
can appear in one location of an image, it could also appear somewhere else.

CNN are built on top of four key ideas: local connection, shared weights, pooling
and the use of many layers. The architecture of a typical CNN is composed of these
types of layers; in a first part: convolution layer, ReLLU, pooling layer and in a second
part: fully connected layer, loss layer. Each type of layer is going to be presented in
one of the next several paragraphs.

The convolution layer applies a set of discrete convolutions on the output of the
previous layer. Each convolution is done using a kernel (also called: mask, filter
bank) and produces a 2D feature map. The feature maps contain high activations if
their convolutions have detected an interesting motif. The layer’s parameters are the
weights in the kernels. This layer can also be seen as a layer with local connections,
so that a neuron is only connected to neurons of the previous layer in the same region.
Local connections give the ability to the layer to detect local patterns from the previous
layer. Moreover, the weights of the local connections are shared among all neurons
in the layer, this means that the same local pattern can be detected in the same way
anywhere in the previous layer.
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Figure 2. Architecture of LeNet-5, a basic Convolutional Neural Network

The ReL U (Rectified Linear Units) applies a non-linear function f(z) = max(0, z)
to the output of the previous convolution layer. Other non-linear activation function
are available: hyperbolic tangent or sigmoid function for example. The ReL.U have
become very popular because they improve the speed of convergence during the train-
ing of neural networks (Krizhevsky et al., 2012).

The pooling layer splits the output of the previous layer into a grid, then on each
cell of the grid a pooling function is applied and outputs only a single value. Thus, the
pooling layer is a down-sampling step, the resolution of the grid can vary and affects
the sampling rate. This layer merges multiple semantically similar features into one.
Due to the down-sampling, the position of the feature is not accurately preserved,
therefore an invariance to small shifts or distortions is spawned. In fact, the position
of a feature is not as important as its relative position to others features. A typical
pooling function outputs the maximum value of a local patch.

Repeating these layers several times in this order: convolution, ReLU, pooling,
one can exploit the fact that high level features are composed of lower level features.
The first group of layers can detect small details such as edges and contours. The
second layer can detect higher level features such as motifs, and so on. This process
is repeated so that firstly, edges are merged into motifs, motifs into parts and finally
parts into objects. The architecture of a very basic CNN is shown in figure 2.

After this first part composed of convolution layers, ReLU, pooling layers, a sec-
ond part of the neural network is composed of fully-connected layers and a loss layer.
This second part is a classical feed-forward neural network used to classify the features
coming from the first part. The training of CNN is possible using the backpropaga-
tion algorithm. Because of the local connectivity and the shared weights, there is less
parameters in the model thus the network is less prone to overfitting and generalizes
better.
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4.2. Feature extraction

Recent work showed that the representation learned by the CNN is a good descrip-
tor for image retrieval. With the AlexNet network (Krizhevsky et al., 2012), one can
use the feature activations induced by an image at the last hidden layer to represent an
image. Experiments has shown that semantically similar images get a similar feature
vector in a Euclidean space, even if the images are not close in L2. The only drawback
is that the representation is a real-valued vector of dimension 4096. Therefore, the
computation of the distance between two vectors is expensive, moreover the storage
cost could also be an issue. To tackle this issue, the authors suggest a dimensionality
reduction with an auto encoder.

In a later paper (Babenko ef al., 2014), the performance of feature vectors extracted
with CNN in the context of image retrieval is studied more in depth. The conclusion
is that CNN performs well for image retrieval, even if the network is trained on an un-
related classification task. The performances can be improved with a fine tuning on a
dataset similar to the retrieval dataset. For example, by using a neural network trained
on ImageNet to retrieve landscape images, the performances are good. Unsurpris-
ingly, after a retraining on a dataset composed of landscape images the performances
become even better. The compression with PCA is also investigated, and the retrieval
performance is not too much affected when compared to other state of the art descrip-
tors. Image features extraction with CNN, for all these reasons, seems to be very
promising for image retrieval.

4.3. Models

In this section, three models, which perform very well on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), are presented. All of them are imple-
mented in the Keras (Chollet et al., 2015) library and are used later in this thesis.

The VGG network (Simonyan, Zisserman, 2014) was created in 2014 for ILSVRC.
The authors investigated the effect of depth on the accuracy. For that purpose, they
use a simple convolutional neural network with very small (3x3) convolution filters
with stride and pad of 1, 2x2 maxpooling with stride 2, and push the depth to 16-19
layers, which was a lot at the time. VGG16 and VGG19 are detailed in table 1.

The InceptionV3 network (Szegedy et al., 2015) was created in 2015. Instead of
stacking convolutional and pooling layers sequentially on top of each others, some
layers are in parallel and their results are merged periodically. As shown in this article
from Google Research Blog’, the key idea of this network is to stack Inception mod-
ules, which are composed of convolutional and pooling layers. By using fewer weights
than previous neural networks, for instance about 30x fewer parameters than VGG19,
the computational cost of InceptionV3 is suitable for big-data or mobile scenarios.

5. https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
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Table 1. Configurations of VGG16 and VGG19 networks. The convolutional layer
parameters are denoted as "‘conv(receptive field size)-(number of channels)"’. The
ReLU activation is not shown for brevity.

VGGI6 |  VGGI9
input (224x224 RBG image)
conv3-64 conv3-64
conv3-64 conv3-64
maxpool
conv3-128 conv3-128
conv3-128 conv3-128
maxpool
conv3-256 conv3-256
conv3-256 conv3-256
conv3-256 conv3-256
conv3-256
maxpool
conv3-512 conv3-512
conv3-512 conv3-512
conv3-512 conv3-512
conv3-512
maxpool
conv3-512 conv3-512
conv3-512 conv3-512
conv3-512 conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max

The ResNet50 network (He et al., 2015) was created in 2015 for ILSVRC. The
authors use a 50 layers Residual Network, whose key idea is to introduce shortcuts
connections into a sequential network. As networks are becoming deeper, the learning
is more difficult because of the vanishing/exploding gradient problem. In particular,
with the network depth increasing, accuracy gets saturated and then degrades rapidly.
The idea behind shortcuts in Residual Networks is to by-pass a set of layers if they
are not useful to improve the accuracy of the whole network. Thus, in theory, it is
possible to stack as many building blocks as possible without affecting the accuracy,
because unnecessary blocks can be skipped.



CNN features for Reverse Image Search 17

Table 2. Contindency table for information retrieval

Relevant Non-relevant
Retrieved True positive (tp) | False positive (fp)

Not retrieved | False negative (fn) | True negative (tn)

5. Benchmarking

In a previous work (Gaillard, Egyed-Zsigmond, 2017), we designed a new frame-
work to benchmark reverse image search engines. Our approach is based on evalu-
ation measures of information retrieval systems described in (Manning et al., 2008).
We model the reverse image search engine as an information retrieval system that re-
turns an unranked set of documents for a query. If many documents are retrieved, the
user is in charge of choosing the one that best suits his needs. This section presents
our benchmark along with the results we obtained with the three perceptual hashing
functions presented in section 3.

5.1. Metrics

To process a query, the reverse image search engine order the indexed images by
relevance. Results are retrieved using a fixed-radius nearest neighbor search. Thus,
each image, whether relevant for the query or not, can be retrieved or not. This notion
can be made clear by examining the following contingency table 2.

The effectiveness of the system is measured with the following metrics: Precision
(P) is the fraction of retrieved documents that are relevant,

#(relevant items retrieved)  #p
#(retrieved items) tp+ fp

precision = P(relevant|retrieved) =

Recall (R) is the fraction of relevant documents that are retrieved.

. #(relevant items retrieved t
recall = IP(retrieved|relevant) = ( #\(/ 0 ! i I)V ) _ : f 7
relevant items D n

A single measure that trades off precision versus recall is the F-measure, which is
the weighted harmonic mean of precision and recall:

(B*+1)PR 2PR

= - F_:
B2P+ R =L PYR
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It is possible to change the weights in the harmonic mean of the F measure in
order to tune it. This is done by changing the 3 parameter. Values of 5 < 1 emphasize
precision, while values of S > 1 emphasize recall. This is important in order to
benchmark the system in accordance with its application.

5.2. Protocol

In order to compare the effectiveness and the speed of different image search meth-
ods, we created a comparison protocol. We choose 25,000 images from the MIR-
FLICKR dataset® because they are representative of what is commonly seen on Inter-
net.

To be able to calculate automatically the precision and recall of the results, we
applied 6 small modifications on each image, that gave us a dataset with 175 000
images. We measured the results precision and recall.

The modifications (illustrated on Figure 3) applied on the images are:

Gaussian blur (r = 4, ¥ = 2)

Black and white transformation
Resize to half height and width

JPEG compression with quality = 10

Clockwise rotation by 5 degrees

A o

Crop by 10% at the right side of the image.

These modifications represent the basic cases of small changes images usually
undergo over the web. The benchmark is programmed so that it is easy to change the
set of modifications.

Our benchmark protocol for a generic reverse image search engine is detailed in
this section.

1. Select N + M images that are representative to an application (see section
2.2) with no duplicated images. In our case N = 24,000 and M = 1,000 (for
reproducibility, the first 1,000 images from the dataset in alphabetical order)

2. Split them into 2 sets of [NV base images and M non-indexed images.

3. Select K modifications and from the N base images, generate K new image
sets containing X' X N modified images. In our case K = 6, and the modifications
are those enumerated above.

4. Index the N base images and the K x N modified images according to the
image representation method.

5. Make search queries with:

6. http://press.liacs.nl/mirflickr
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4) compress 5) rotate

Figure 3. Illustration of the image modifications.

a) The M images from the non-indexed image set,
b) The N images from the base image set.
¢) The K x N images from the modified sets.

6. Analyse the search results and compute the mean precision, the mean recall and
the mean F-measure of all queries.

a) For the M images of the non-indexed set, there should be no relevant result
image. Thus, the result should be empty.

b) When querying with one of the other (K + 1) x N already indexed images,
the relevant results are the K + 1 images that are the modified version of the query
image. Thus, the result of each query should contain K+1 images that come from the
same base image as the query image.

Because our system use a fixed-radius nearest neighbor search, we model it as an
information retrieval system that returns an unranked set of documents. To determine
the best radius, we repeat this protocol for several different radii.

It is possible to use the protocol in two different ways. Firstly, by applying all
modifications to have an overview of the performances of a method. Thus, it is possi-
ble to compare two methods according to a complete workload. Secondly, by applying
a single modification, for example to identify the strength and weakness of a method
according to some modifications.
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F1 measure max according to a modification

mDCT
B MH

W RV

Base Blur  Compress Crop 10%  Gray Half Rotate 5°
10%

Figure 4. Maximum F1-measure of DCT, MH and RV perceptual hash functions
against single modifications.

We implemented the protocol” as Linux shell commands and C++, using online
available libraries.

5.3. Results

We evaluate the methods described in section 3: DCT, MH and RV based percep-
tual hash functions from (Zauner, 2010).

5.3.1. Retrieval performance against single modification

We index the N base images and then make K search queries each with one of
the NV modified images. We compute the F-measure for various radius and take the
maximum.

The functions are robust against Gaussian blur (r = 4, ¥ = 2), JPEG compression
(quality 10%), grayscale filter, and scale to half the size. However the functions are not
robust against crop (10% on the right) and rotate (5 degrees clockwise) modifications
as illustrated on Figure 4.

We also tested, the evolution of our accuracy measures with different degrees of
the modifications. We noticed that the different hash methods were quite sensible

7. See our implementation on: https://github.com/mgaillard/pHashRis
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DCT: Precision, Recall, F-measure
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Figure 5. Precision/Recall/F-measure curves of the DCT based perceptual hash
function search results according to different radius values

to rotations (above 2 degrees) or to cropping (above 5%), but resisted very well to
compression, blur or resize.

5.3.2. Retrieval performance against all modifications

To evaluate the speed and retrieval performance of a reverse image search engine,
we run the protocol described in the previous section. The results are in figures 5, 6,
7. We evaluate the retrieval performance, calculating the mean precision, recall and F-
measure of the returned results. The calculation is repeated for different radius values.
The radius here is a normalized distance value, below which two images are consid-
ered as similar. We can see that all functions have equivalent retrieval performances
with a maximum F-measure of about 60%.
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MH: Precision, Recall, F-measure
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Figure 7. Precision/Recall/F-measure curves of the Radial Variance based
perceptual hash function search results according to different radius values
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6. CNN Features

In section 4, we advocate the use of convolutional neural networks to extract fea-
tures from images. In this section, we evaluate the robustness of CNN features against
modifications using the benchmark presented in section 5. We assess the robustness
of existing networks trained on an unrelated classification task. The aim being to find
an already good representation, according to a specific distance.

6.1. Protocol

The protocol is inspired from our previous benchmark for Reverse Image Search
described in section 5. It is based on a set of images that are modified according
to some transformations. We then consider a base image and its modified versions as
similar amongst themselves, and all other pairs of images as dissimilar. All images are
queried and the average precision, recall and Fmeasure are computed over all queries.

6.1.1. Preparation
Following are the steps to prepare images for the benchmark.

1. Select N images that are representative to an application (see section 2.2) with
no duplicated images. In our case, IV is equal to either 200, 2500 or 25,000.

2. Select K modifications and from the N base images, generate K new image
sets containing K x N modified images. In our case K = 6, and the modifications are
those enumerated in section 5.2: blur, grayscale, resize, JPEG compression, rotation
and cropping.

3. With a convolutional neural network, extract the features from all images. More
details about this step are given in section 6.2.

6.1.2. RIS benchmark

To get a precise idea of the retrieval performance using CNN features, we imple-
ment the same benchmark as in section 5. We compute all distances between all pairs
of images and apply a threshold below which images are considered as similar. Then
we compute the mean precision, the mean recall and the mean F-measure. The proto-
col is repeated for various thresholds, the threshold that maximizes the F-measure can
be considered as the best radius for the reverse image search system.

1. Make search queries with the (K + 1) x NN images from the base and modified
sets.

2. Analyse the search results and compute the mean precision, the mean recall and
the mean F-measure of all queries.

a) The relevant results are the K + 1 images that are the modified versions of
the query image. Thus, the result of each query should contain K+1 images that come
from the same base image as the query image.
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The resulting plots can be seen in the Result section 6.4 of this chapter. Ideally,
the maximum F-measure should be near to 1.

6.2. Models

In this section, we describe models compared in the benchmark. To extract the
features, we use a pretrained neural network to predict the label of an image. The
feature vector consists of the activations of the units of one specific layer. If the layer
is a convolutional or pooling layer, the results are 2D features maps. In this case, the
activations are flattened using a global average or maximum pooling. We compare
the models described in section 4.3: VGGI16, VGG19, ResNet50, InceptionV3. We
also evaluate Xception, which is also a model available in Keras. If needed the feature
vectors can be normalized to unit length in Euclidean distance. To compare the feature
vectors, two distances are used: Euclidean and Cosine.

In the following sections, we describe, for all models, all layers that we compared.
The name of layers are the same as in the Keras library. For the models, the naming
convention we use in the program is: [network]_[layer]. If the feature vector is nor-
malized with L2 we add _norm_I2 at the end. For example, ResNet50_flatten_1_norm_I2
is extracted from the flatten_1 layer of the ResNet50 network and is normalized as unit
length in Euclidean distance.

6.2.1. VGG

In VGG16 and VGG19, available layers ordered by increasing depth are:
— block{i}_pool_avg fori € {3,4,5}

— block{i}_pool_max for i € {3,4,5}

— flatten

— fecl

— fc2

— predictions

6.2.2. ResNet50

In ResNet50, available layers ordered by increasing depth are:
— activation_{i}_avg for i € {4,7,10,13, 16,19, 22,28, 31, 34,37, 40,43,46}
activation_{i}_max for i € {4,7,10, 13,16, 19,22, 28, 31, 34, 37,40, 43,46}

— avg_pool_avg

avg_pool_max
flatten_1

predictions
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6.2.3. InceptionV3
In InceptionV3, available layers ordered by increasing depth are:
— mixed{i}_avg fori € {0,1,2,3,4,5,6,7,8,9,10}
— mixed{i}_max fori € {0,1,2,3,4,5,6,7,8,9,10}

— predictions

6.2.4. Xception
In Xception, available layers ordered by increasing depth are:
— add_{i}_avgfori € {1,2,3,4,5,6,7,8,9,10,11,12}
add_{i}_max fori € {1,2,3,4,5,6,7,8,9,10,11, 12}

block14_sepconvl_act_avg

block14_sepconv1_act_max
— block14_sepconv2_act_avg

block14_sepconv2_act_max

predictions

6.3. Implementation

Our implementation is on GitHub®. It consists of three main programs and a bash
script to orchestrate their executions.

The first program is a Python script that extracts features from images using the
neural network library Keras (Chollet ez al., 2015). The feature vectors can be saved in
HDFS5 files, which are then read during the execution of the second and third programs.

The second program is the implementation of the distance benchmark. It computes
statistics on the distribution of distances between similar and dissimilar images. Those
are first written in a file and then used to generate a plot with gnuplot.

The third program is the RIS benchmark. It is written in C++ with OpenMP, to
speed up the computation of distances in high dimensional spaces thanks to multi-
threading and SIMD. This benchmark computes the mean precision, recall and F-
measure of a RIS system based on the previously extracted features. The results are
first written in a file and then used to generate a plot with gnuplot.

The workflow of the bash script is:
1. Images are modified according to the K modifications with ImageMagick®.

2. Features are extracted from the (K + 1) x N images according to all possible
models.

8. https://github.com/mgaillard/CNNFeaturesRobustness
9. www.imagemagick.org
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Table 3. Benchmark with all modifications on 25,000 images: maximum Fmeasure

Model Dimensions Distance Radius Precision Recall Fmeasure
VGG16_flatten 25088 cosine 0,51 0,954 0,943 0,936
VGG19_flatten 25088 cosine 0,50 0,955 0,934 0,931

ResNet50_activation_46_max 2048 cosine 0,17 0,968 0,913 0,928
ResNet50_activation_43_max 2048 cosine 0,14 0,952 0,919 0,921
VGG16_block5_pool_max 512 cosine 0,23 0,947 0,898 0,904
VGG19_block5_pool_max 512 cosine 0,23 0,948 0,892 0,902
InceptionV3_mixed9_max 2048 cosine 0,20 0,926 0,892 0,881
InceptionV3_mixed9_avg 2048 cosine 0,20 0,924 0,865 0,866

3. The distance benchmark is executed for all features according to Euclidean and
Cosine distance.

4. The RIS benchmark is executed for all features according to Euclidean and
Cosine distance.

6.4. Results

Because the benchmark is computationally intensive, to find the best model we
proceed in three steps. Firstly, we compare all models with all distances but only with
200 images. We retain only the models whose F-measure is above 90%. Secondly, we
repeat this process with 2,500 images. The best models with 2500 images ordered by
decreasing F-measure are:

— VGGI16_flatten with Cosine distance; F'measure = 0,952
VGG19_flatten with Cosine distance; F'measure = 0,949

ResNet50_activation_46_max with Cosine distance; F'measure = 0,948

ResNet50_activation_43_max with Cosine distance; F'measure = 0,941

— VGGI16_block5_pool_max with Cosine distance; Fmeasure = 0,931

VGG19_block5_pool_max with Cosine distance; F'measure = 0,929

InceptionV3_mixed9_max with Cosine distance; F'measure = 0,918

InceptionV3_mixed9_avg with Cosine distance; F'measure = 0,911
Finally, we compare these models with all the 25,000 images from the MIR-
FLICKR collection.

6.5. Retrieval performance against all modifications

The results of the benchmark with all modifications are shown in table 3. Each
line represents the maximum F-measure of each model along with the corresponding
radius, precision and recall.
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Base Blur Gray Resize Compr Rotate Crop
VGG16_flatten 1,000 0,985 0975 0998 0983 0,930 0,998
VGG19_flatten 1,000 0,984 0971 0998 0982 0,920 0,998
ResNet50_activation_46_max | 1,000 0,983 0,964 0,998 0,968 0,928 0,998
ResNet50_activation_43_max | 1,000 0,984 0,955 0,998 0,966 0,927 0,999
VGG16_block5_pool_max 1,000 0,955 0,926 0,99 0966 0,848 0,995
VGG19_block5_pool_max 1,000 0,954 0926 0996 0966 0,846 0,995
InceptionV3_mixed9_max 1,000 0910 0953 0994 0917 0,857 0,994
InceptionV3_mixed9_avg 1,000 0,906 0,914 0,993 0,892 0,866 0,999

Table 4. Maximum Fmeasure of CNN models against single modifications.

We can see that despite the fact that the F-measure decreases by about 3 points
with 25,000 images compared to 2,500 images, the F-measures are still very good.
For comparison, on the same benchmark, the DCT based perceptual hash function
yields to a F-measure of about 0.6 (cf. section 5.3).

6.6. Retrieval performance against single modification

The results of the benchmark with single modifications are shown in table 4. Each
column represents the maximum F-measure of each model against a single modifi-
cation. The radius at which the F-measure is maximum can vary depending on the
model and the modification. Thus, this figure gives an idea of the best retrieval accu-
racy against a single modification. This is why individually the F-measure is better
than in the benchmark against all modifications. Because in this latter, the radius is
the same for all modifications.

We can see that all models work well and their F-measures are at least above 0.84.
All models are very robust against resize to half-size and cropping 10% on the right,
with a F-measure greater than 0.99. The robustness against Gaussian blur, grayscale
filter and JPEG compression is good, with a F-measure greater than 0.9. Rotation is the
harder modification, with a F-measure of about 0.85 for VGG16_block5_pool_max,
VGGI19_block5_pool_max, InceptionV3_mixed9_max and InceptionV3_mixed9_avg,
and about 0.92 for the others. Models based on ResNet50 yields to the best results for
all modifications.
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7. Conclusion

The potential of CNN Features for reverse image search, even with slight modifica-
tions, is proven. Image representations extracted with convolutional neural networks
on unrelated classification tasks are considerably robust against modifications. We
didn’t expressly compared CNN Features against other state of the art descriptors,
but our experiments, along with the content of other publications presented in chapter
4, tend to prove that CNN Features are state of the art descriptors for reverse image
search and more generally for image retrieval.

In section 5, we compare different perceptual hash functions, which can be used
as image representation, and show that they are not robust against cropping and ro-
tation. In section 6, we compare features extracted with off the shelf convolutional
neural networks and find a set of models that have very good retrieval performances
against modifications. Especially, these are quite robust against rotation and very ro-
bust against cropping.

Robustness is certainly caused by preprocessing and data augmentation during
training. Because the input of the convolutional neural network has always a constant
size, images are first resized, thus features are robust against scaling. During training,
it is common to generate more samples by transforming original images. For exam-
ple, during the training of VGG (Simonyan, Zisserman, 2014), to obtain the fixed size
input images, training images are randomly cropped from rescaled training images.
Therefore, the neural network is forced to learn a representation that is robust against
cropping. More generally, by choosing the modifications made during the data aug-
mentation step, one could give the neural network the ability to be robust against these
modifications.

Two different distances are used to compare feature vectors: Euclidean and Cosine.
However, it appears that cosine distance yields better results than Euclidean distance
on the networks we tested. We think that it is because, ReLU units are activated with
the presence of a feature. The level of presence of the feature being not as important
as the fact that it is present.

Of course, CNN features are very robust against modifications but they are not
suited for large scale applications. Indeed, the dimensionality of CNN feature vectors
is very high. For more details, see the dimensions column of table 3. As explained in
section 2.6, it is currently impossible to index p-dimensional feature vectors when p is
greater than 20. For a large-scale application, one should reduce the dimension of the
CNN feature vectors. The most popular approach is Locality Sensitive Hashing (LSH)
with random projections (Wang et al., 2014), which hashes p-dimensional into binary
codes while preserving angular distance. Other methods, which take into account
the data distribution, are available for example: Semantic Hashing (Salakhutdinov,
Hinton, 2007),(Salakhutdinov, Hinton, 2009), Minimal Loss Hashing (Norouzi, Fleet,
2011) and Triplet Ranking Loss (Norouzi et al., 2012).
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In order to make CNN features more scalable, our next challenge is to develop
methods to reduce the dimensionality of the CNN feature vectors while preserving
similarity.
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