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RESUME. Dans ce papier nous présentons une étude comparative de méthodes pour un système 

de recherche d’images inversée. Nous nous concentrons plus spécifiquement sur le cas de la 

recherche d’images quasi identiques dans de très grands ensembles d’images. Après une étude 

de l’état de l’art, nous avons implanté notre propre système de recherche d’images inversée en 

utilisant trois descripteurs basés sur des techniques de hachage perceptuel choisies pour leur 

extensibilité. Nous avons comparé la vitesse et la précision/rappel de ces méthodes contre 

plusieurs modifications (flou gaussien, redimensionnement, compression, rotation, recadrage). 

Nous proposons également un système à deux couches combinant : une première étape très 

rapide mais moyennement précise ; avec une étape, certes, plus lente mais beaucoup plus 

précise. Nous améliorons ainsi la précision globale de notre système tout en conservant sa 

rapidité de réponse. 

 

ABSTRACT. In this paper, we presented our study and benchmark on Reverse Image Search (RIS) 

methods, with a special focus on finding almost similar images in a very large image collection. 

In our framework we concentrate our study on radius (threshold) based image search methods. 

We focused our study on perceptual hash based solutions for their scalability, but other 

solutions seem to give also good results. 

We studied the speed and the accuracy (precision/recall) of several existing image features. We 

also proposed a two-layer method that combines a fast but not very precise method with a 

slower but more accurate method to provide a scalable and precise RIS system. 

 

MOTS-CLES : recherche d’images inversé, pHash, optimisation, SI images 

KEYWORDS: reverse image search, pHash, optimization, image information systems 
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1. Introduction  

In this paper we deal with the reverse image retrieval problem in image centered 

information systems. The purpose of the reverse image retrieval is to retrieve images 

by similarity based on a query image. This study is mainly motivated by the need to 

find the original of an image in a large-scale image database given a slightly modified 

version of it. This kind of systems are extensively used in the context of Intellectual 

property and crime prevention. Many implementations already exist, for example 

Google Images (Google, 2017), TinEye (TinEye, 2017) and Microsoft 

PhotoDNA(Microsoft, 2017). At last we also expose a benchmark that we designed 

in order to evaluate and compare these systems.  

In the introduction we present and define the problem. In the second section we 

will explain how reverse image search engines generally work. In the third section we 

will specially present the perceptual hashes as a technical solution to address our 

problem. We will also introduce different existing implementations. Finally, in the 

fourth section, we will expose our benchmark for these systems and the result of our 

experimentations. 

In this document we study a reverse image search engine that is capable of 

indexing a huge amount of images and then allows the user to search for the original 

version of an image, even if this one is slightly modified. The number of indexed 

images can be more than a million. The time to index does not really matter as long 

as it is done within a reasonable interval. On the contrary the time to search should be 

as short as possible in such a way that it is possible to search 10 000 images in less 

than an hour. If several technical solutions are able to address this problem, we want 

to be able to compare them in order to select the one that best fits our needs.  

We define a modification as an operation that does not alter the essential content 

of an image (Zauner, 2010) A non-exhaustive list of modifications is given later in 

this section. 

The definition of a similar image varies depending on what photometric and 

geometric variations are deemed acceptable. This depends on the application (Philbin, 

Isard, & Zisserman, 2007). For our application, two images are considered 

perceptually similar if a human interprets and understands them as the same image. 

For example, an image and a slightly modified version of it are perceptually similar 

whereas two images with similar colors and shapes can be conceptually different 

therefore perceptually different. 

In this section a non-exhaustive list of image modifications is exposed: Scaling: 

not necessarily with the same aspect ratio ; Lossy compression: JPEG ; Filter: blur, 

noise, artistic color filters ; Rotation ; Flipping: horizontally or vertically ; Cropping ; 

Shifting ; Random deletion: rectangle ; Random insertion: text, watermark, logo ; 

After a modification by one of those listed above, an image can be considered as 

similar to the original one. These modifications do not alter the essential content of 

images if they are done carefully. Obviously, it is no more the case if the parameters 

take extreme values. For example, if we crop the half of an image, this one becomes 
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perceptually different. On a computer to perform these modifications on a collection 

of images we can use ImageMagick. (ImageMagick, 2017) 

2. State of the art 

Reverse image search (RIS) is a type of content-based image retrieval (CBIR). 

According to (Chutel & Sakhare, 2014), It is a search engine technology that takes 

images as input and returns results related to the query image. The search analyses the 

actual content of images rather than the metadata such as keywords or descriptions 

associated with them. The aim of Reverse Image Search Engine is to find the similar, 

exact image on web based on the given query image though the search images are 

cropped, transformed or it may have illumination changed. This Reverse Image 

Search engine can be used for detecting unauthorized use of brands and copyright 

images. Other common usage modes are to locate the source of an image, find a higher 

resolution version, discover other webpages where the image appears or get some 

more information about the image. (TinEye, 2017) 

The following is a list of terms related to the reverse image search topic: near 

identical image detection, image retrieval, content-based image retrieval, information 

retrieval. 

In what follows, we present our general framework for reverse image search. 

Reverse image search with large databases imposes two challenging constraints 

on the methods used. Firstly, for each image, only a small amount of data (a 

fingerprint) can be stored; secondly, queries must be very cheap to evaluate. In order 

to be able to deal efficiently with millions of images, while still being able to keep a 

sizeable portion of the data in main memory, we need to generate an extremely 

compressed feature vector for each image. (Philbin et al., 2007) 

Most approaches to reverse image search share a similar pattern. Firstly, an image 

representation and a distance measure are defined, which affects both the amount of 

data stored per image and the time complexity of a database search. When searching 

the database for similar images, algorithms of different time complexity are used, the 

most naive approach being computing the difference to every image in the database. 

(Philbin et al., 2007)  

Reverse image search engines usually work in two phases: indexing and searching. 

In the indexing phase, the database is filled with feature vectors of images that should 

be found later on. The images are not necessarily stored in the database; this reduces 

the size of the database dramatically. In the searching phase, a new image is presented 

to the system and a feature vector representing this one is computed. Then the feature 

vector is compared to those in the database using the previously defined distance 

measure. Here are two manners to handle the results: a radius (threshold) based and a 

k nearest neighbors based method. The radius based method works well for content 

authentication emphasizing precision while the k nearest neighbors, usually is used 

when the needs of recall are more important. A general workflow for the radius based 

method is illustrated in Figure 1. There is a match if the distance between the query 
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vector and a vector representing an indexed image is less than or equal to a threshold. 

Usually the distances are normalized between 0 and 1. If there is a match the system 

will return the images corresponding to the concerned feature vectors as results to the 

similar image search for the query image. There are a lot of techniques to define a pair 

of image representations and distances. Some of them are discussed in the next 

section. The workflow is composed of these steps: 

Feature vector extraction: A feature vector is computed from the image using 

one of the later-discussed techniques. 

Matching: A feature vector is compared to those in the database. A sequential 

search is the easiest way to iterate over the database and can be parallelized or even 

distributed among many computers. There also exist some special data structures to 

fasten the search when the distance verifies certain properties. Instead of considering 

all indexed images, only a subset of them is compared to the query feature vector. For 

example, in Hamming space, the Multi-Index Hashing (MIH) has sub-linear run-time 

behavior for uniformly distributed codes (Norouzi, Punjani, & Fleet, 2013).  

 

Figure 1 General workflow for reverse image search.  

Therefore the determination of an adequate threshold, in accordance with the 

actual application scenario, is critical. (Zauner, 2010) Information retrieval research 

has shown that precision and recall follow an inverse relationship. (Datta, Joshi, Li, 

& Wang, 2008) If the threshold is too low, the precision is better at the expense of the 

recall because only the most relevant images are retrieved. On the contrary, if the 

threshold is too high, the recall is better but the precision is worse. When the 

application needs to authenticate an image, the precision is more important because 

we want to limit the number of false positives, whereas, when the application needs 

to identify content, the recall is more important because the user can deal with a small 

number of false positives. (Zauner, 2010) In any case, relevant and irrelevant images 

cannot be separated clearly; the boundary between these two sets is fuzzy. 
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3. Technical solutions 

As stated in the last section, a technical solution for reverse image search consists 

of an image representation and a distance measure between these representations. 

(Philbin et al., 2007) In addition to that, the image representation should be easy to 

store in a database. For example, to compute a similarity distance between two images 

first their feature vectors are extracted and then the distance between them is 

measured. The more the result is near to 0, the more the images are considered as 

similar. In our study we have considered several image features based on colors, 

textures, contours, interest points, neural networks and tested libraries such as 

LIRE1(Lux & Chatzichristofis, 2008), OpenCV2 and pHash3. We focused our study 

on perceptual hashing because, at a first glance, it appeared to be significantly faster 

than the descriptors from the LIRE library with an almost identical accuracy, on basic 

modifications (scaling, compression, grayscale filter). 

As our goal was to search large image collections, we focused mainly on the 

perceptual hash functions implemented in the  library pHash because it was really 

faster than the others giving comparable accuracy. Moreover, by using an existing 

library we save implementing time in order to focus our resources on 

experimentations. 

3.1. Perceptual hashing  

3.1.1 Definition 

A perceptual hash function is a type of hash function that has the property to be 

analogous if inputs are similar. This allows us to make meaningful comparisons 

between hashes in order to measure the similarity between the source data. Perceptual 

hash functions are an interdisciplinary field of research. Cryptography, digital 

watermarking and digital signal processing are part of this field of research.  

The definition of a hash function according to (Menezes, Oorschot, & Vanstone, 

1997) is:  

A hash function is a computationally efficient function mapping binary strings 

of arbitrary length to binary strings of some fixed length, called hash-values. 

In the case of a perceptual hash, some more properties should be present according 

to (Zauner, 2010): 

Let H denote a hash function which takes one media object (e.g. an image) as 

input and produces a binary string of length l. Let x denote a particular media 

object and �̂� denote a modified version of this media object which is 

"perceptually similar" to x. Let y denote a media object that is "perceptually 

                         
1 http://www.lire-project.net 
2 http://opencv.org 
3 http://phash.org  
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different" from x. Let x’ and y’ denote hash values. {0 1⁄ }𝑙 represents binary 

strings of length l. Then the four desirable properties of a perceptual hash are 

identified as follows. 

A uniform distribution of hash-values; the hash-value should be unpredictable. 

𝑃(𝐻(𝑥) = 𝑥′) ≈
1

2𝑙
 , ∀𝑥′ ∈ {0 1⁄ }𝑙 

 

Pairwise independence for perceptually different media objects. 

𝑃(𝐻(𝑥) = 𝑥′|𝐻(𝑌) = 𝑦′) ≈ 𝑃(𝐻(𝑥) = 𝑥′), ∀𝑥′, 𝑦′ ∈ {0 1⁄ }𝑙 

Invariance for perceptually similar media objects. 

𝑃(𝐻(𝑥) = 𝐻(�̂�)) ≈ 1 

Distinction of perceptually different media objects. It should be impossible to 

construct a perceptually different media object that has the same hash-value 

as another media object. 

𝑃(𝐻(𝑥) = 𝐻(𝑦)) ≈ 0 

Most of the time to achieve these properties the perceptual hash function extract 

some features of media objects that are invariant under slight modifications to 

construct a perceptual hash. For example, knowing how a compression algorithm 

works, it is possible to find some invariant features and then design a perceptual hash 

based on them. Some examples of perceptual hash functions for images are detailed 

later in this section.  

3.2. Implementations 

In this section, we present the three implementations of perceptual hash functions 

that we used in our benchmark: the DCT based , the Marr-Hildert Operator based and 

the Radial Variance based perceptual hash functions from (Zauner, 2010). 

The Discrete Cosine Transformation (DCT) based perceptual hash from (Zauner, 

2010) takes advantage of the property that low-frequency DCT coefficients are mostly 

stable under image modifications to construct a 64 bits image hash. The Hamming 

distance is used to compare them. The fact that the hashes are encoded on 64 bits and 

the use of the Hamming distance is a wise choice because a hash can fit in a processor 

register. Moreover, to fasten the calculation of the Hamming distance, it is possible to 

use the special popcount (Sun & Mundo, 2016) instruction from the x86 processor 

family. 

The Marr-Hildreth (MH) operator, also denoted as the Laplacian of Gaussian 

(LoG), is a special case of a discrete Laplace filter. It is an edge and contour detection 

based image feature extractor. The MH operator generates vectors encoded on 576 

bits. 
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The Radial Variance hash (Standaert et al., 2005) is based on the Radon  transform 

that is the integral transform which consists of the integral of a function over a straight 

line. It is robust against various image processing steps (e.g. compression) and more 

robust than the DCT and MH based perceptual hash functions against geometrical 

transformations (e.g. rotation up to 2°). 

4. Benchmarking 

As stated in (Zauner, 2010) not much research has been published dealing with the 

benchmarking of perceptual hash functions. Therefore, they propose their own 

benchmark for perceptual hash function: Rihamark. This one allows the user to 

compare several perceptual hash functions against several attacks and to analyze the 

results with graphics. The benchmark is modular so that it is possible to add new 

perceptual hash functions, attacks functions or analyzer functions. This benchmark is 

for example very useful to choose which perceptual hash function is best suited for a 

specific usage. 

Currently we didn’t find an already implemented benchmark for a reverse image 

search engine. It is important to have a benchmark to test all the technical solutions 

previously detailed. As previously said there exists a benchmark but only for 

perceptual hash functions. However, it could be adapted to reverse image search. In 

fact, (Zauner, 2010) proposes some metrics to evaluate content identification systems 

but no implementation is provided along with it. Their approach comes from a 

biometrics background because they model the search as m authentication tests. 

Basically they calculate the False Accept and the False Reject Rate (FAR/FRR) and 

then plot the Receiver Operating Characteristic (ROC) curve. They also explain how 

to compare several perceptual hash functions based on their respective ROC curves. 

We designed a new framework to benchmark the reverse image search engines. 

Our approach is based on the evaluation measures of information retrieval systems 

described in (Manning, Raghavan, & Schütze, 2009). We model the reverse image 

search engine as an information retrieval system that returns an unranked set of 

documents for a query. If many documents are retrieved, the user is in charge of 

choosing the best suited image. 

4.1. Metrics  

4.1.1 Effectiveness 

To process a query, the reverse image search engine classifies the indexed images 

by relevance. In addition, we introduce a threshold for each similarity measure to be 

able to precisely select the images that are to be considered as similar to the query 

image. Thus, each image, whether relevant for the query or not, can be retrieved or 

not. This notion can be made clear by examining the following contingency table from 

(Manning et al., 2009). 
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 Relevant Nonrelevant 

Retrieved True positive False positive 

Not retrieved False negative True positive 

The effectiveness of the system is measured with the following metrics from 

(Manning et al., 2009) 

Precision (P) is the fraction of retrieved documents that are relevant. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠)
= 𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑) 

Recall (R) is the fraction of relevant documents that are retrieved.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠)
= 𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) 

A single measure that trades off precision versus recall is the F measure, which is 

the weighted harmonic mean of precision and recall:  

𝐹 =
(β2 + 1)𝑃𝑅

β2𝑃 + 𝑅
  ;  𝐹β=1 =

2𝑃𝑅

𝑃 + 𝑅
 

It is possible to change the weights in the harmonic mean of the F measure in order 

to tune it. This is done by changing the β parameter. Values of β < 1 emphasize 

precision, while values of β > 1 emphasize recall. This is important in order to 

benchmark the system in accordance with its application. 

4.1.2. Performance 

It is important to measure the time taken by the system for indexing and searching. 

Actually, the system should be able to index millions of images and search across 

them as fast as possible. The complexity of both the indexing and searching phases 

depends on the number of images and is not necessarily linear. In fact, the data 

structure used to store the feature vectors can have a nonlinear complexity. Therefore, 

we propose to measure the indexing and searching time for a certain number of 

images. 

4.2. Protocol 

In order to compare the effectiveness and the speed of different image search 

methods, we created a comparison protocol. We chose 25 000 images from the 

mirflickr dataset4.  

In order to be able to calculate automatically the precision and recall of the results, 

we applied 6 small modifications on each image, that gave us a dataset with 175 000 

                         
4 Http://press.liacs.nl/mirflickr/ (consulted in 2017) 
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images. We measured the index and search speed as well as the results precision and 

recall. 

The modifications (illustrated on Figure 2) applied on the images are: 

1. Gaussian blur (r=4, =2) 

2. Black and white transformation 

3. Resize to half height and width 

4. Compression into jpeg with a quality=10 

5. Clockwise rotation by 5°  

6. Crop by 10% at the right side of the image.  

 

Figure 2 Illustrations of the image modifications 

These modifications represent the basic cases of small changes images usually 

undergo over the web.  

The benchmark was centered on high speed image search methods. We used only 

one perceptual hash function to retrieve the results. Our first benchmark protocol for 

a generic reverse image search engine is detailed in this section.  

1. Select N+M images that are representative to an application with no duplicated 

images. In our case N=24 000 and M=1000 (the first 1000 images from the 

dataset in alphabetical order) 

2. Split them into 2 sets of N base images and M non-indexed images. 

3. Select K transformations and from the N base images, generate K new image 

sets containing K*N transformed images. In our case K=6, and the 

transformations are those enumerated above. 

original 1) blur 2) black/white 3) resize

4) compress 5) rotate 6) crop
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4. Index the N base images and the N*K transformed images according to the 

different image descriptor extraction methods. For us: Discrete Cosine 

Transform (DCT), Marr-Hildert Operator (MH) and Radial Variance (RV) based 

perceptual hashes (Zauner, 2010).   

5. Make search queries with: 

a. The M images from the non-indexed image set. 

b. The N images from the base image set. 

c. The K*N images from the transformed sets. 

6. Analyze the search results and compute the mean precision, the mean recall and 

the mean F measure of all queries. 

a. For the M images of the non-indexed set, there should be no relevant result 

image. Thus the result should be empty. 

b. When querying with one of the other (K+1)*N already indexed images, the 

relevant results are the K+1 images that are the transformations of the query 

image. Thus the result of each query should contain K+1 images that come 

from the same base image as the query image. 

It is possible to repeat this protocol for several different thresholds in order to 

choose the best one suited for an application. In order to be able to measure the 

precision and the recall of our image retrieval information system, we decided to apply 

thresholds to the similarity scores between the query and the result images. We 

obtained this way a precise result set with a given item count. Having a threshold to 

distinguish the similar and different images enables our method to be considered also 

as an information retrieval system that returns an unranked set of images for a query.  

4.3. Results 

4.3.1. Improving searching time in Hamming space 

In the case of our study we implemented and benchmarked 3 solutions to search 

for 64 bit hashes in Hamming space: a CPU based, a GPU based and a MIH (Norouzi, 

Punjani, & Fleet, 2013) based solution. For a large number of hashes (at least 50M) 

the MIH solution is the most efficient, followed by the GPU and finally the CPU. The 

two latter methods are memory bound thus the memory bandwidth and cache are both 

performance factors. 

4.3.2. Effectiveness against modifications 

In order to evaluate the effectiveness of the DCT, MH and RV based perceptual 

hash from pHash (Zauner, 2010) against modifications, we indexed the N base images 

and then made K search queries each with all N modified images.  
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Figure 3  Maximum F1-measure of DCT, MH and RV perceptual hash function 

against modifications 

We computed the F1-measure for various thresholds and took the maximum. The 

functions are robust against Gaussian blur (r=4, =2), JPEG compression (quality 

10%), grayscale filter, and scale to half the size. However the functions are not robust 

against crop (10% on the right) and rotate (5° clockwise) modifications as illustrated 

on Figure 3. 

4.3.3. One-layer system 

In a first implementation, we tested the speed and accuracy of a Reverse Image 

Search system based on one perceptual hash function. The experiment was carried out 

in order to get the best threshold values for the different methods (DCT (Figure 4), 

MH (Figure 5) and RV (Figure 6)). 

We implemented the protocol as Linux shell commands and C++, using processor 

based and GPU based optimizations based on (Sun & Mundo, 2016)  and other online 

available libraries5.  

The first results (see Table 1) showed that the DCT based hash was clearly faster 

than the Marr-Hildert Operator and Radial Variance based hash. It was also more 

accurate against the 6 chosen modifications. We tested the descriptor accuracy, 

calculating the mean precision, recall and F-measure of the returned results. We 

carried out the calculations for different threshold values. The threshold here is a 

normalized descriptor distance value, below which two images are considered as 

similar. 

                         
5 See our implementation on : https://github.com/mgaillard/pHashRis 
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Figure 4 Precision/Recall/F-measure curves of the DCT based perceptual hash 

function search results according to different threshold values 

The performance is evaluated through the index and search speed. Table 1 presents 

the measurements done for 125 000 images on an OVH dedicated virtual machine 

equipped with an Intel Xeon Haswell 8 cores at 3.1 GHz and 30 GB of RAM. 

 

Figure 5 Precision/Recall/F-measure curves of the Marr-Hilderth based perceptual 

hash function search results according to different threshold values.  

We also tested, the evolution of our accuracy measures with different degrees of 

the modifications. We noticed that the different hash methods were quite sensible to 

rotations (above 2°) or to cropping (above 5%), but resisted very well to compression, 

blur or resize.   
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Figure 6 Precision/Recall/F-measure curves of the Radial Variance based 

perceptual hash function search results according to different threshold values. 
 

 Index 125k images 
125k queries 

on 125k images 

DCT 3 min 55 sec 3 min 59 sec  

MH 31 min 13 sec 32 min 20 sec 

RV 1 min 48 sec 3h 47 min 31 sec 

Table 1, image indexing and search time measures for the DCT, MH and RV based 

perceptual hash methods.  

4.3.4. Two layered system 

A second experiment was carried out in order to enhance the precision of our 

reverse image search engine. We used two successive layers of reverse image search. 

First, a very fast layer whose recall is high and precision is not perfect based on one 

perceptual hash function. Second a more accurate layer whose precision and recall are 

both near to 1. The aim of the first layer is to drastically reduce the number of images 

to be processed by the second layer which is more accurate but more expensive in 

searching time. The second layer is based on SIFT descriptors and on a distance 

between them. The distance is defined as follows: 

 When comparing two images A and B, let I be the number of interest points in 

image who has less interest points and J be the number of interest points in other 

image.  We compute a matching that gives us for each interest point of image A the 2 

nearest neighbors in the image B. Among these matches, we select only the G good 

matches that pass the ratio test proposed by (Lowe, 2004) in section 7.1 (In our 
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implementation 0,8). Finally, the distance is D = 1 – G/I. The two images are 

considered similar if the distance is less than or equal to 0,9. 

In order to compare the results with or without the second, SIFT based layer, we 

run the protocol first without it in order to estimate a reasonable threshold for the 

perceptual hash layer and then with the SIFT layer in order to be able to compare the 

results. We choose the threshold for the perceptual hash layer so that the average 

precision of the first layer is around 0.4 thus the SIFT layer has to deal with 20 images 

on average which is reasonable. Because the search time is higher, we run it with these 

parameters: N=2000, M=200. 

The results of the comparisons between the precision and recall evolutions in a 

one layer (DCT based perceptual hash) and a two layers (DCT based perceptual hash 

and SIFT based descriptor) information retrieval system are presented in Figure 7.  

The precision is enhanced without affecting too much the recall at the expense of 

searching time and index size. We can see that for a threshold of around 0.25, the 

precision of the first step DCT perceptual hash based method is around 0.7. That 

means that in our case, when 7 images are to be returned, around 15 images are 

retrieved. The SIFT based comparison, even in its brute force implementation runs 

very fast on such a small number of images and enables to improve the global 

precision considerably (to more than 0,95). The implementation of our benchmarks 

can be accessed on GitHub6. 

 

Figure 7 Precision and recall evaluation comparison between a one layer (DCT) 

RIS system and a two layers (DCT + SIFT) RIS system 

 

                         
6 https://github.com/mgaillard/pHashRis 
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5. Conclusion 

In this paper, we presented our study and benchmark on Reverse Image Search 

(RIS) methods, with a special focus on finding almost similar images in a very large 

image collection.  

In our framework for reverse image search we state that there are mainly two 

algorithms for the search phase. One searches for the k nearest neighbors and the other 

searches for all images in a radius (within a distance threshold). We studied more the 

latter so the metrics of the benchmark should be adapted in the case of a k nearest 

neighbor method because the results can no longer be modeled as an unranked set of 

documents. 

We focused our study on perceptual hash based solutions for their scalability, but 

other solutions seem to give also good results. 

We studied the speed and the accuracy (precision/recall) of several existing image 

features. We also proposed a two-layer method that combines a fast but not very 

precise method with a slower but more accurate method to provide a scalable and 

precise RIS system.  

The two-layer method can be extended with multiple functions in each layer. It is 

especially possible to use several perceptual hash functions in the first layer each of 

them tailored to a special modification. For example, a DCT based perceptual hash is 

robust against JPEG compression, Gaussian blur, scaling but is weak against rotation. 

To compensate for this weakness we could use a Color Moment based perceptual hash 

(Tang, Dai, & Zhang, 2012) which is robust against rotations. The second, SIFT 

based, layer has also some weaknesses. For example, images on which colors are 

uniform have a small number of interest points. To address this problem, it could be 

relevant to use other more accurate methods.  

We foresee also the implementation of the LSH method from (Philbin et al., 2007) 

to reduce even more the hash sizes. The test of neural network based methods, such 

as the DSRH method from (Yao, Long, Mei, & Rui, 2016) is also a possible 

improvement idea although it needs a quite heavy learning phase. 

We implemented our method in a near duplicate image search application7 that 

can detect near duplicate image groups very quickly. This application can integrate 

information systems containing many images. One of our application fields is the 

illegal copy detection in large image sets. In this situation, the application has two 

inputs: the original images and the image set to check to search their copies in. The 

output will provide for each original image the list of its near duplicates found in the 

images set to check.  

 

                         
7 https://github.com/mgaillard/ImageDuplicateFinder 
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