
Large scale reverse image search

A method comparison for almost identical image retrieval

Mathieu Gaillard1, Előd Egyed-Zsigmond1,2

1 Université de Lyon

INSA Lyon,

mathieu.gaillard@insa-lyon.fr

2.Université de Lyon

LIRIS, INSA Lyon

elod.egyed-zsigmond@insa-lyon.fr

RESUME. Dans ce papier nous présentons une étude comparative de méthodes pour un système

de recherche d’images inversée. Nous nous concentrons plus spécifiquement sur le cas de la

recherche d’images quasi identiques dans de très grands ensembles d’images. Après une étude

de l’état de l’art, nous avons implanté notre propre système de recherche d’images inversée en

utilisant trois descripteurs basés sur des techniques de hachage perceptuel choisies pour leur

extensibilité. Nous avons comparé la vitesse et la précision/rappel de ces méthodes contre

plusieurs modifications (flou gaussien, redimensionnement, compression, rotation, recadrage).

Nous proposons également un système à deux couches combinant : une première étape très

rapide mais moyennement précise ; avec une étape, certes, plus lente mais beaucoup plus

précise. Nous améliorons ainsi la précision globale de notre système tout en conservant sa

rapidité de réponse.

ABSTRACT. In this paper, we presented our study and benchmark on Reverse Image Search (RIS)

methods, with a special focus on finding almost similar images in a very large image collection.

In our framework we concentrate our study on radius (threshold) based image search methods.

We focused our study on perceptual hash based solutions for their scalability, but other

solutions seem to give also good results.

We studied the speed and the accuracy (precision/recall) of several existing image features. We

also proposed a two-layer method that combines a fast but not very precise method with a

slower but more accurate method to provide a scalable and precise RIS system.

MOTS-CLES : recherche d’images inversé, pHash, optimisation, SI images

KEYWORDS: reverse image search, pHash, optimization, image information systems

INFORSID 2017

127

1. Introduction

In this paper we deal with the reverse image retrieval problem in image centered

information systems. The purpose of the reverse image retrieval is to retrieve images

by similarity based on a query image. This study is mainly motivated by the need to

find the original of an image in a large-scale image database given a slightly modified

version of it. This kind of systems are extensively used in the context of Intellectual

property and crime prevention. Many implementations already exist, for example

Google Images (Google, 2017), TinEye (TinEye, 2017) and Microsoft

PhotoDNA(Microsoft, 2017). At last we also expose a benchmark that we designed

in order to evaluate and compare these systems.

In the introduction we present and define the problem. In the second section we

will explain how reverse image search engines generally work. In the third section we

will specially present the perceptual hashes as a technical solution to address our

problem. We will also introduce different existing implementations. Finally, in the

fourth section, we will expose our benchmark for these systems and the result of our

experimentations.

In this document we study a reverse image search engine that is capable of

indexing a huge amount of images and then allows the user to search for the original

version of an image, even if this one is slightly modified. The number of indexed

images can be more than a million. The time to index does not really matter as long

as it is done within a reasonable interval. On the contrary the time to search should be

as short as possible in such a way that it is possible to search 10 000 images in less

than an hour. If several technical solutions are able to address this problem, we want

to be able to compare them in order to select the one that best fits our needs.

We define a modification as an operation that does not alter the essential content

of an image (Zauner, 2010) A non-exhaustive list of modifications is given later in

this section.

The definition of a similar image varies depending on what photometric and

geometric variations are deemed acceptable. This depends on the application (Philbin,

Isard, & Zisserman, 2007). For our application, two images are considered

perceptually similar if a human interprets and understands them as the same image.

For example, an image and a slightly modified version of it are perceptually similar

whereas two images with similar colors and shapes can be conceptually different

therefore perceptually different.

In this section a non-exhaustive list of image modifications is exposed: Scaling:

not necessarily with the same aspect ratio ; Lossy compression: JPEG ; Filter: blur,

noise, artistic color filters ; Rotation ; Flipping: horizontally or vertically ; Cropping ;

Shifting ; Random deletion: rectangle ; Random insertion: text, watermark, logo ;

After a modification by one of those listed above, an image can be considered as

similar to the original one. These modifications do not alter the essential content of

images if they are done carefully. Obviously, it is no more the case if the parameters

take extreme values. For example, if we crop the half of an image, this one becomes

INFORSID 2017

128

perceptually different. On a computer to perform these modifications on a collection

of images we can use ImageMagick. (ImageMagick, 2017)

2. State of the art

Reverse image search (RIS) is a type of content-based image retrieval (CBIR).

According to (Chutel & Sakhare, 2014), It is a search engine technology that takes

images as input and returns results related to the query image. The search analyses the

actual content of images rather than the metadata such as keywords or descriptions

associated with them. The aim of Reverse Image Search Engine is to find the similar,

exact image on web based on the given query image though the search images are

cropped, transformed or it may have illumination changed. This Reverse Image

Search engine can be used for detecting unauthorized use of brands and copyright

images. Other common usage modes are to locate the source of an image, find a higher

resolution version, discover other webpages where the image appears or get some

more information about the image. (TinEye, 2017)

The following is a list of terms related to the reverse image search topic: near

identical image detection, image retrieval, content-based image retrieval, information

retrieval.

In what follows, we present our general framework for reverse image search.

Reverse image search with large databases imposes two challenging constraints

on the methods used. Firstly, for each image, only a small amount of data (a

fingerprint) can be stored; secondly, queries must be very cheap to evaluate. In order

to be able to deal efficiently with millions of images, while still being able to keep a

sizeable portion of the data in main memory, we need to generate an extremely

compressed feature vector for each image. (Philbin et al., 2007)

Most approaches to reverse image search share a similar pattern. Firstly, an image

representation and a distance measure are defined, which affects both the amount of

data stored per image and the time complexity of a database search. When searching

the database for similar images, algorithms of different time complexity are used, the

most naive approach being computing the difference to every image in the database.

(Philbin et al., 2007)

Reverse image search engines usually work in two phases: indexing and searching.

In the indexing phase, the database is filled with feature vectors of images that should

be found later on. The images are not necessarily stored in the database; this reduces

the size of the database dramatically. In the searching phase, a new image is presented

to the system and a feature vector representing this one is computed. Then the feature

vector is compared to those in the database using the previously defined distance

measure. Here are two manners to handle the results: a radius (threshold) based and a

k nearest neighbors based method. The radius based method works well for content

authentication emphasizing precision while the k nearest neighbors, usually is used

when the needs of recall are more important. A general workflow for the radius based

method is illustrated in Figure 1. There is a match if the distance between the query

INFORSID 2017

129

vector and a vector representing an indexed image is less than or equal to a threshold.

Usually the distances are normalized between 0 and 1. If there is a match the system

will return the images corresponding to the concerned feature vectors as results to the

similar image search for the query image. There are a lot of techniques to define a pair

of image representations and distances. Some of them are discussed in the next

section. The workflow is composed of these steps:

Feature vector extraction: A feature vector is computed from the image using

one of the later-discussed techniques.

Matching: A feature vector is compared to those in the database. A sequential

search is the easiest way to iterate over the database and can be parallelized or even

distributed among many computers. There also exist some special data structures to

fasten the search when the distance verifies certain properties. Instead of considering

all indexed images, only a subset of them is compared to the query feature vector. For

example, in Hamming space, the Multi-Index Hashing (MIH) has sub-linear run-time

behavior for uniformly distributed codes (Norouzi, Punjani, & Fleet, 2013).

Figure 1 General workflow for reverse image search.

Therefore the determination of an adequate threshold, in accordance with the

actual application scenario, is critical. (Zauner, 2010) Information retrieval research

has shown that precision and recall follow an inverse relationship. (Datta, Joshi, Li,

& Wang, 2008) If the threshold is too low, the precision is better at the expense of the

recall because only the most relevant images are retrieved. On the contrary, if the

threshold is too high, the recall is better but the precision is worse. When the

application needs to authenticate an image, the precision is more important because

we want to limit the number of false positives, whereas, when the application needs

to identify content, the recall is more important because the user can deal with a small

number of false positives. (Zauner, 2010) In any case, relevant and irrelevant images

cannot be separated clearly; the boundary between these two sets is fuzzy.

Feature
vector

extraction

Images

database

Indexing phase

Query image

Feature
vector

extraction

Feature
vector

matching

Threshold

Searching phase

Filtering Result
(similarimages)

INFORSID 2017

130

3. Technical solutions

As stated in the last section, a technical solution for reverse image search consists

of an image representation and a distance measure between these representations.

(Philbin et al., 2007) In addition to that, the image representation should be easy to

store in a database. For example, to compute a similarity distance between two images

first their feature vectors are extracted and then the distance between them is

measured. The more the result is near to 0, the more the images are considered as

similar. In our study we have considered several image features based on colors,

textures, contours, interest points, neural networks and tested libraries such as

LIRE1(Lux & Chatzichristofis, 2008), OpenCV2 and pHash3. We focused our study

on perceptual hashing because, at a first glance, it appeared to be significantly faster

than the descriptors from the LIRE library with an almost identical accuracy, on basic

modifications (scaling, compression, grayscale filter).

As our goal was to search large image collections, we focused mainly on the

perceptual hash functions implemented in the library pHash because it was really

faster than the others giving comparable accuracy. Moreover, by using an existing

library we save implementing time in order to focus our resources on

experimentations.

3.1. Perceptual hashing

3.1.1 Definition

A perceptual hash function is a type of hash function that has the property to be

analogous if inputs are similar. This allows us to make meaningful comparisons

between hashes in order to measure the similarity between the source data. Perceptual

hash functions are an interdisciplinary field of research. Cryptography, digital

watermarking and digital signal processing are part of this field of research.

The definition of a hash function according to (Menezes, Oorschot, & Vanstone,

1997) is:

A hash function is a computationally efficient function mapping binary strings

of arbitrary length to binary strings of some fixed length, called hash-values.

In the case of a perceptual hash, some more properties should be present according

to (Zauner, 2010):

Let H denote a hash function which takes one media object (e.g. an image) as

input and produces a binary string of length l. Let x denote a particular media

object and �̂� denote a modified version of this media object which is

"perceptually similar" to x. Let y denote a media object that is "perceptually

1 http://www.lire-project.net
2 http://opencv.org
3 http://phash.org

INFORSID 2017

131

different" from x. Let x’ and y’ denote hash values. {0 1⁄ }𝑙 represents binary

strings of length l. Then the four desirable properties of a perceptual hash are

identified as follows.

A uniform distribution of hash-values; the hash-value should be unpredictable.

𝑃(𝐻(𝑥) = 𝑥′) ≈
1

2𝑙
 , ∀𝑥′ ∈ {0 1⁄ }𝑙

Pairwise independence for perceptually different media objects.

𝑃(𝐻(𝑥) = 𝑥′|𝐻(𝑌) = 𝑦′) ≈ 𝑃(𝐻(𝑥) = 𝑥′), ∀𝑥′, 𝑦′ ∈ {0 1⁄ }𝑙

Invariance for perceptually similar media objects.

𝑃(𝐻(𝑥) = 𝐻(�̂�)) ≈ 1

Distinction of perceptually different media objects. It should be impossible to

construct a perceptually different media object that has the same hash-value

as another media object.

𝑃(𝐻(𝑥) = 𝐻(𝑦)) ≈ 0

Most of the time to achieve these properties the perceptual hash function extract

some features of media objects that are invariant under slight modifications to

construct a perceptual hash. For example, knowing how a compression algorithm

works, it is possible to find some invariant features and then design a perceptual hash

based on them. Some examples of perceptual hash functions for images are detailed

later in this section.

3.2. Implementations

In this section, we present the three implementations of perceptual hash functions

that we used in our benchmark: the DCT based , the Marr-Hildert Operator based and

the Radial Variance based perceptual hash functions from (Zauner, 2010).

The Discrete Cosine Transformation (DCT) based perceptual hash from (Zauner,

2010) takes advantage of the property that low-frequency DCT coefficients are mostly

stable under image modifications to construct a 64 bits image hash. The Hamming

distance is used to compare them. The fact that the hashes are encoded on 64 bits and

the use of the Hamming distance is a wise choice because a hash can fit in a processor

register. Moreover, to fasten the calculation of the Hamming distance, it is possible to

use the special popcount (Sun & Mundo, 2016) instruction from the x86 processor

family.

The Marr-Hildreth (MH) operator, also denoted as the Laplacian of Gaussian

(LoG), is a special case of a discrete Laplace filter. It is an edge and contour detection

based image feature extractor. The MH operator generates vectors encoded on 576

bits.

INFORSID 2017

132

The Radial Variance hash (Standaert et al., 2005) is based on the Radon transform

that is the integral transform which consists of the integral of a function over a straight

line. It is robust against various image processing steps (e.g. compression) and more

robust than the DCT and MH based perceptual hash functions against geometrical

transformations (e.g. rotation up to 2°).

4. Benchmarking

As stated in (Zauner, 2010) not much research has been published dealing with the

benchmarking of perceptual hash functions. Therefore, they propose their own

benchmark for perceptual hash function: Rihamark. This one allows the user to

compare several perceptual hash functions against several attacks and to analyze the

results with graphics. The benchmark is modular so that it is possible to add new

perceptual hash functions, attacks functions or analyzer functions. This benchmark is

for example very useful to choose which perceptual hash function is best suited for a

specific usage.

Currently we didn’t find an already implemented benchmark for a reverse image

search engine. It is important to have a benchmark to test all the technical solutions

previously detailed. As previously said there exists a benchmark but only for

perceptual hash functions. However, it could be adapted to reverse image search. In

fact, (Zauner, 2010) proposes some metrics to evaluate content identification systems

but no implementation is provided along with it. Their approach comes from a

biometrics background because they model the search as m authentication tests.

Basically they calculate the False Accept and the False Reject Rate (FAR/FRR) and

then plot the Receiver Operating Characteristic (ROC) curve. They also explain how

to compare several perceptual hash functions based on their respective ROC curves.

We designed a new framework to benchmark the reverse image search engines.

Our approach is based on the evaluation measures of information retrieval systems

described in (Manning, Raghavan, & Schütze, 2009). We model the reverse image

search engine as an information retrieval system that returns an unranked set of

documents for a query. If many documents are retrieved, the user is in charge of

choosing the best suited image.

4.1. Metrics

4.1.1 Effectiveness

To process a query, the reverse image search engine classifies the indexed images

by relevance. In addition, we introduce a threshold for each similarity measure to be

able to precisely select the images that are to be considered as similar to the query

image. Thus, each image, whether relevant for the query or not, can be retrieved or

not. This notion can be made clear by examining the following contingency table from

(Manning et al., 2009).

INFORSID 2017

133

 Relevant Nonrelevant

Retrieved True positive False positive

Not retrieved False negative True positive

The effectiveness of the system is measured with the following metrics from

(Manning et al., 2009)

Precision (P) is the fraction of retrieved documents that are relevant.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠)
= 𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

Recall (R) is the fraction of relevant documents that are retrieved.

𝑅𝑒𝑐𝑎𝑙𝑙 =
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠)
= 𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

A single measure that trades off precision versus recall is the F measure, which is

the weighted harmonic mean of precision and recall:

𝐹 =
(β2 + 1)𝑃𝑅

β2𝑃 + 𝑅
 ; 𝐹β=1 =

2𝑃𝑅

𝑃 + 𝑅

It is possible to change the weights in the harmonic mean of the F measure in order

to tune it. This is done by changing the β parameter. Values of β < 1 emphasize

precision, while values of β > 1 emphasize recall. This is important in order to

benchmark the system in accordance with its application.

4.1.2. Performance

It is important to measure the time taken by the system for indexing and searching.

Actually, the system should be able to index millions of images and search across

them as fast as possible. The complexity of both the indexing and searching phases

depends on the number of images and is not necessarily linear. In fact, the data

structure used to store the feature vectors can have a nonlinear complexity. Therefore,

we propose to measure the indexing and searching time for a certain number of

images.

4.2. Protocol

In order to compare the effectiveness and the speed of different image search

methods, we created a comparison protocol. We chose 25 000 images from the

mirflickr dataset4.

In order to be able to calculate automatically the precision and recall of the results,

we applied 6 small modifications on each image, that gave us a dataset with 175 000

4 Http://press.liacs.nl/mirflickr/ (consulted in 2017)

INFORSID 2017

134

images. We measured the index and search speed as well as the results precision and

recall.

The modifications (illustrated on Figure 2) applied on the images are:

1. Gaussian blur (r=4, =2)

2. Black and white transformation

3. Resize to half height and width

4. Compression into jpeg with a quality=10

5. Clockwise rotation by 5°

6. Crop by 10% at the right side of the image.

Figure 2 Illustrations of the image modifications

These modifications represent the basic cases of small changes images usually

undergo over the web.

The benchmark was centered on high speed image search methods. We used only

one perceptual hash function to retrieve the results. Our first benchmark protocol for

a generic reverse image search engine is detailed in this section.

1. Select N+M images that are representative to an application with no duplicated

images. In our case N=24 000 and M=1000 (the first 1000 images from the

dataset in alphabetical order)

2. Split them into 2 sets of N base images and M non-indexed images.

3. Select K transformations and from the N base images, generate K new image

sets containing K*N transformed images. In our case K=6, and the

transformations are those enumerated above.

original 1) blur 2) black/white 3) resize

4) compress 5) rotate 6) crop

INFORSID 2017

135

4. Index the N base images and the N*K transformed images according to the

different image descriptor extraction methods. For us: Discrete Cosine

Transform (DCT), Marr-Hildert Operator (MH) and Radial Variance (RV) based

perceptual hashes (Zauner, 2010).

5. Make search queries with:

a. The M images from the non-indexed image set.

b. The N images from the base image set.

c. The K*N images from the transformed sets.

6. Analyze the search results and compute the mean precision, the mean recall and

the mean F measure of all queries.

a. For the M images of the non-indexed set, there should be no relevant result

image. Thus the result should be empty.

b. When querying with one of the other (K+1)*N already indexed images, the

relevant results are the K+1 images that are the transformations of the query

image. Thus the result of each query should contain K+1 images that come

from the same base image as the query image.

It is possible to repeat this protocol for several different thresholds in order to

choose the best one suited for an application. In order to be able to measure the

precision and the recall of our image retrieval information system, we decided to apply

thresholds to the similarity scores between the query and the result images. We

obtained this way a precise result set with a given item count. Having a threshold to

distinguish the similar and different images enables our method to be considered also

as an information retrieval system that returns an unranked set of images for a query.

4.3. Results

4.3.1. Improving searching time in Hamming space

In the case of our study we implemented and benchmarked 3 solutions to search

for 64 bit hashes in Hamming space: a CPU based, a GPU based and a MIH (Norouzi,

Punjani, & Fleet, 2013) based solution. For a large number of hashes (at least 50M)

the MIH solution is the most efficient, followed by the GPU and finally the CPU. The

two latter methods are memory bound thus the memory bandwidth and cache are both

performance factors.

4.3.2. Effectiveness against modifications

In order to evaluate the effectiveness of the DCT, MH and RV based perceptual

hash from pHash (Zauner, 2010) against modifications, we indexed the N base images

and then made K search queries each with all N modified images.

INFORSID 2017

136

Figure 3 Maximum F1-measure of DCT, MH and RV perceptual hash function

against modifications

We computed the F1-measure for various thresholds and took the maximum. The

functions are robust against Gaussian blur (r=4, =2), JPEG compression (quality

10%), grayscale filter, and scale to half the size. However the functions are not robust

against crop (10% on the right) and rotate (5° clockwise) modifications as illustrated

on Figure 3.

4.3.3. One-layer system

In a first implementation, we tested the speed and accuracy of a Reverse Image

Search system based on one perceptual hash function. The experiment was carried out

in order to get the best threshold values for the different methods (DCT (Figure 4),

MH (Figure 5) and RV (Figure 6)).

We implemented the protocol as Linux shell commands and C++, using processor

based and GPU based optimizations based on (Sun & Mundo, 2016) and other online

available libraries5.

The first results (see Table 1) showed that the DCT based hash was clearly faster

than the Marr-Hildert Operator and Radial Variance based hash. It was also more

accurate against the 6 chosen modifications. We tested the descriptor accuracy,

calculating the mean precision, recall and F-measure of the returned results. We

carried out the calculations for different threshold values. The threshold here is a

normalized descriptor distance value, below which two images are considered as

similar.

5 See our implementation on : https://github.com/mgaillard/pHashRis

0,0

0,2

0,4

0,6

0,8

1,0

Base Blur Compress
10%

Crop 10% Gray Half Rotate 5°

F1 measure max according to a modification

DCT

MH

RV

INFORSID 2017

137

Figure 4 Precision/Recall/F-measure curves of the DCT based perceptual hash

function search results according to different threshold values

The performance is evaluated through the index and search speed. Table 1 presents

the measurements done for 125 000 images on an OVH dedicated virtual machine

equipped with an Intel Xeon Haswell 8 cores at 3.1 GHz and 30 GB of RAM.

Figure 5 Precision/Recall/F-measure curves of the Marr-Hilderth based perceptual

hash function search results according to different threshold values.

We also tested, the evolution of our accuracy measures with different degrees of

the modifications. We noticed that the different hash methods were quite sensible to

rotations (above 2°) or to cropping (above 5%), but resisted very well to compression,

blur or resize.

INFORSID 2017

138

Figure 6 Precision/Recall/F-measure curves of the Radial Variance based

perceptual hash function search results according to different threshold values.

 Index 125k images
125k queries

on 125k images

DCT 3 min 55 sec 3 min 59 sec

MH 31 min 13 sec 32 min 20 sec

RV 1 min 48 sec 3h 47 min 31 sec

Table 1, image indexing and search time measures for the DCT, MH and RV based

perceptual hash methods.

4.3.4. Two layered system

A second experiment was carried out in order to enhance the precision of our

reverse image search engine. We used two successive layers of reverse image search.

First, a very fast layer whose recall is high and precision is not perfect based on one

perceptual hash function. Second a more accurate layer whose precision and recall are

both near to 1. The aim of the first layer is to drastically reduce the number of images

to be processed by the second layer which is more accurate but more expensive in

searching time. The second layer is based on SIFT descriptors and on a distance

between them. The distance is defined as follows:

 When comparing two images A and B, let I be the number of interest points in

image who has less interest points and J be the number of interest points in other

image. We compute a matching that gives us for each interest point of image A the 2

nearest neighbors in the image B. Among these matches, we select only the G good

matches that pass the ratio test proposed by (Lowe, 2004) in section 7.1 (In our

INFORSID 2017

139

implementation 0,8). Finally, the distance is D = 1 – G/I. The two images are

considered similar if the distance is less than or equal to 0,9.

In order to compare the results with or without the second, SIFT based layer, we

run the protocol first without it in order to estimate a reasonable threshold for the

perceptual hash layer and then with the SIFT layer in order to be able to compare the

results. We choose the threshold for the perceptual hash layer so that the average

precision of the first layer is around 0.4 thus the SIFT layer has to deal with 20 images

on average which is reasonable. Because the search time is higher, we run it with these

parameters: N=2000, M=200.

The results of the comparisons between the precision and recall evolutions in a

one layer (DCT based perceptual hash) and a two layers (DCT based perceptual hash

and SIFT based descriptor) information retrieval system are presented in Figure 7.

The precision is enhanced without affecting too much the recall at the expense of

searching time and index size. We can see that for a threshold of around 0.25, the

precision of the first step DCT perceptual hash based method is around 0.7. That

means that in our case, when 7 images are to be returned, around 15 images are

retrieved. The SIFT based comparison, even in its brute force implementation runs

very fast on such a small number of images and enables to improve the global

precision considerably (to more than 0,95). The implementation of our benchmarks

can be accessed on GitHub6.

Figure 7 Precision and recall evaluation comparison between a one layer (DCT)

RIS system and a two layers (DCT + SIFT) RIS system

6 https://github.com/mgaillard/pHashRis

INFORSID 2017

140

5. Conclusion

In this paper, we presented our study and benchmark on Reverse Image Search

(RIS) methods, with a special focus on finding almost similar images in a very large

image collection.

In our framework for reverse image search we state that there are mainly two

algorithms for the search phase. One searches for the k nearest neighbors and the other

searches for all images in a radius (within a distance threshold). We studied more the

latter so the metrics of the benchmark should be adapted in the case of a k nearest

neighbor method because the results can no longer be modeled as an unranked set of

documents.

We focused our study on perceptual hash based solutions for their scalability, but

other solutions seem to give also good results.

We studied the speed and the accuracy (precision/recall) of several existing image

features. We also proposed a two-layer method that combines a fast but not very

precise method with a slower but more accurate method to provide a scalable and

precise RIS system.

The two-layer method can be extended with multiple functions in each layer. It is

especially possible to use several perceptual hash functions in the first layer each of

them tailored to a special modification. For example, a DCT based perceptual hash is

robust against JPEG compression, Gaussian blur, scaling but is weak against rotation.

To compensate for this weakness we could use a Color Moment based perceptual hash

(Tang, Dai, & Zhang, 2012) which is robust against rotations. The second, SIFT

based, layer has also some weaknesses. For example, images on which colors are

uniform have a small number of interest points. To address this problem, it could be

relevant to use other more accurate methods.

We foresee also the implementation of the LSH method from (Philbin et al., 2007)

to reduce even more the hash sizes. The test of neural network based methods, such

as the DSRH method from (Yao, Long, Mei, & Rui, 2016) is also a possible

improvement idea although it needs a quite heavy learning phase.

We implemented our method in a near duplicate image search application7 that

can detect near duplicate image groups very quickly. This application can integrate

information systems containing many images. One of our application fields is the

illegal copy detection in large image sets. In this situation, the application has two

inputs: the original images and the image set to check to search their copies in. The

output will provide for each original image the list of its near duplicates found in the

images set to check.

7 https://github.com/mgaillard/ImageDuplicateFinder

INFORSID 2017

141

References

Chutel, P. M., & Sakhare, A. (2014). Evaluation of compact composite descriptor based reverse image

search. In 2014 International Conference on Communication and Signal Processing (pp. 1430–1434).

IEEE. http://doi.org/10.1109/ICCSP.2014.6950085

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval. ACM Computing Surveys, 40(2), 1–60.

http://doi.org/10.1145/1348246.1348248

Google. (2017). Google Images. Retrieved February 18, 2017, from https://images.google.com/

ImageMagick. (2017). ImageMagick @ Convert, Edit, Or Compose Bitmap Images. Retrieved February

18, 2017, from https://www.imagemagick.org/

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of

Computer Vision, 60(2), 91–110. http://doi.org/10.1023/B:VISI.0000029664.99615.94

Lux, M., & Chatzichristofis, S. A. (2008). Lire: lucene image retrieval. In Proceeding of the 16th ACM
international conference on Multimedia - MM ’08 (p. 1085). New York, New York, USA: ACM

Press. http://doi.org/10.1145/1459359.1459577

Manning, C. D., Raghavan, P., & Schütze, H. (2009). An Introduction to Information Retrieval. Information

Retrieval, (c). http://doi.org/10.1109/LPT.2009.2020494

Menezes, A. J., Oorschot, P. C. Van, & Vanstone, S. a. (1997). Handbook of Applied Cryptography.

Electrical Engineering, 106, 780. http://doi.org/10.1.1.99.2838

Microsoft. (2017). PhotoDNA Cloud Service. Retrieved February 18, 2017, from

https://www.microsoft.com/en-us/photodna

Norouzi, M., Punjani, A., & Fleet, D. J. (2013). Fast Exact Search in Hamming Space with Multi-Index

Hashing. Retrieved from http://arxiv.org/abs/1307.2982

Philbin, J., Isard, M., & Zisserman, A. (2007). Scalable Near Identical Image and Shot Detection. Analysis,

549–556. http://doi.org/10.1145/1282280.1282359

Standaert, F.-X., Lefebvre, E., Rouvroy, G., Macq, B., Quisquater, J.-J., & Legat, J.-D. (2005). Practical

evaluation of a radial soft hash algorithm. In International Conference on Information Technology:

Coding and Computing (ITCC’05) - Volume II (p. 89–94 Vol. 2). IEEE.

http://doi.org/10.1109/ITCC.2005.229

Sun, C., & Mundo, C. C. del. (2016). Revisiting POPCOUNT Operations in CPUs/GPUs. In The

International Conference for High Performance Computing, Networking, Storage and Analysis (p.

2p (poster)). Salt Lake City, Utah, USA.

Tang, Z., Dai, Y., & Zhang, X. (2012). Perceptual Hashing for Color Images Using Invariant Moments.

Appl. Math. Inf. Sci, 6, 643–650.

TinEye. (2017). TinEye Reverse Image Search. Retrieved February 18, 2017, from https://tineye.com/

Yao, T., Long, F., Mei, T., & Rui, Y. (2016). Deep Semantic-Preserving and Ranking-Based Hashing for

Image Retrieval. International Joint Conference on Artificial Intelligence (IJCAI), (c), 3931–3937.

Zauner, C. (2010). Implementation and benchmarking of perceptual image hash functions. Master’s thesis.

Upper Austria University of Applied Sciences, Hagenberg Campus. Retrieved from

http://phash.org/docs/pubs/thesis_zauner.pdf

INFORSID 2017

142

